Utility Safety Management Articles

Trisha Bilyeu

Live Safely: The OG&E Way

Web-OGE-5

Safety is more than a priority at OG&E – it’s a value. Priorities can change daily, but values stay the same and define what OG&E is as a company. Formed in 1902, OG&E is Oklahoma’s oldest and largest investor-owned utility, and over time it has built a culture around being incident- and injury-free (IIF), with the companywide belief that one incident is too many. In everything OG&E employees do, they are intentional about safety and committed to living safely, whether it’s at work, at home, at play or behind the wheel.

All OG&E employees receive rigorous and personalized IIF training. One of the most meaningful parts of this training is “the letter.” Imagine getting a letter from your loved one stating that he or she has been in an accident and this is goodbye. Every employee is asked to write this type of letter to their family. It’s a gut-wrenching exercise that really drives home the critical importance of safety.

To further the culture, every company meeting begins with a safety moment. It can be anything from a driving tip to a personal experience. Our employees also carry safety coins every day as a reminder to always live safely and to protect themselves and others from injury through constant engagement.

Since OG&E started its IIF journey in 2008, the company has continued to see a decrease in incidents and injuries.

“We put a stake in the ground, so to speak, by standing up and saying our employees deserve to work in the safest environment in the industry,” said Jean Leger, vice president of utility operations at OG&E. “Employees live and work safely not out of motivation to be in compliance or to avoid punishment, but instead because not doing so would violate a deep internal value. It’s our steadfast determination to achieve a goal – even in the face of obstacles and setbacks.”

Continue reading
  42 Hits
  0 Comments
Danny Raines, CUSP

Voice of Experience: The Value of Worker Training

Many recent articles I have read in other magazines and via social media emphasize the importance of worker training. I couldn’t agree more. It is both important and valuable that employers invest in training for new employees entering the industry as well as current employees. While the return on investment cannot always be accurately measured and calculated, the ROI does exist nonetheless – just imagine what injury and fatality statistics would look like if we did not train our workers.

One of an employer’s training-related responsibilities is to investigate cases of failure to follow training that result in property damage, injuries or fatalities. OSHA also obligates employers to report any accident that requires medical attention beyond first aid, if the accident is work-related. And risk management professionals and certified loss control professionals are required to investigate property damage involving employees for insurance purposes. Loss control can be difficult to track because damage is not always immediate, and the cost of damages may not be directly attributable to failure to use proper training. In addition, a bad underground splice or a failed connection on primary or secondary that results in property damage may or may not be recorded by an employer as a failure to use proper training.

I understand that we are human beings, and because we are human, we make mistakes. And yet, I would like for all of us to think about the possibility of following all rules and regulations all the time – in short, I want all of us to strive to operate excellently. By adhering to what we learn in our training and using the correct procedures to perform our work, we can protect lives and prevent property damage.

Continue reading
  38 Hits
  0 Comments
Steve Andreas

When Utilities Leave the Pavement: Off-Road Driving Safety Challenges

Web-IMG_0799

The need to safely access hard-to-reach areas continues to be a struggle in numerous industries, including utilities. Historically, people have pushed the limits of machinery and designed better tools in attempts to access such areas. In the early days of automobiles, for instance, enthusiasts modified and improved the designs of their vehicles, enabling them to travel farther across terrain on which the vehicles were never originally designed to travel. As technology and industry continued to progress, manufacturers began to design vehicles specifically intended for off-road applications, which led to the development of a new vehicle category: the all-terrain vehicle (ATV). Over time, the ATV label – which originally applied to Jeeps – became synonymous with four-wheelers, or quads. As even more time passed, ATVs eventually became useful not only as recreational vehicles but as staples of off-road transportation for industrial uses as well.

While ATVs were first produced specifically for utility use in the early 1980s, the utility task vehicle (UTV) – also known as a side-by-side – was initially launched by Kawasaki in 1988 as the MULE, an acronym for multi-use light equipment. The UTV provides features that cater better to industrial applications, such as more seating and cargo capacity. ATV-type vehicles existed long before the 1980s, but they were designed and used almost exclusively by the recreational market. Since utility use of ATVs and UTVs did not exist before the 1980s and became more commonplace in the 1990s, the market and technology are still relatively new from a regulatory standpoint. However, due to significant advancements in the functionality and reliability of these vehicles, industrial use has grown dramatically in recent years. That has prompted an increase in the need to identify proper use of these machines as transportation to access job sites or as tools to aid workers in performing tasks.

Continue reading
  571 Hits
  0 Comments
Peter P. Greaney, M.D.

Empowering Employees to Take Care of Themselves

Web-shutterstock_466688123

Sergio is repairing equipment at a power station when he feels a twinge of discomfort in his lower back. Per company policy, he informs his supervisor. What happens next is likely to have a critical impact on the outcome for Sergio and his employer.

Let’s assume the supervisor instructs Sergio to stop working and visit a clinic for evaluation. At the clinic, the treating provider conducts a physical exam, orders some diagnostic tests and writes a prescription for medication to relieve pain and inflammation. Sergio takes the afternoon off and returns to work the next day with restrictions. The encounter is recordable and results in a workers’ compensation claim.

Now, let’s consider an alternative scenario. Sergio and his supervisor call or use a smartphone application to contact an injury management triage center. Sergio describes his symptoms to an occupational health nurse or physician who offers reassurance and care guidance. He is given the option of a clinic visit, but with instructions from the clinician, Sergio instead voluntarily agrees to self-administer first aid.

After applying a cold pack to his back and taking a nonprescription anti-inflammatory medication approved for use at the worksite, Sergio resumes work and is able to safely finish his shift. A claim is not filed and there is no case to record.

In the first scenario, a routine complaint of low-back discomfort diverges onto a path with the potential for high medical costs, productivity loss, delayed recovery and litigation. In the second scenario, Sergio is given choices that include using work – an activity “prescription” – as therapy during recovery. Sergio is empowered to successfully manage his condition without worrying about making it worse or potentially missing work.

Continue reading
  430 Hits
  0 Comments
Danny Raines, CUSP

Voice of Experience: Understanding Induced Voltage

It has taken the electric utility industry many years to understand induced voltage. When I started working in the 1960s, it was explained to me that voltage remaining on de-energized lines was static voltage that had to be bled off or else it could be deadly. Now, when I speak to groups about temporary system grounding for the protection of employees, I occasionally still hear the term “static voltage” being used to describe what really is induced voltage from a nearby energized line. Even today, not everyone in the industry completely understands induced voltage.

So, what exactly is induced voltage? Here are some things utility safety and operations professionals should understand. The electromagnetic field around an energized conductor produces capacitive and magnetic coupling to all nearby objects within the electromagnetic field. The voltage level of the energized conductor and the physical length of the de-energized conductor that is exposed to the energized (source) conductor will determine the amount of voltage on the de-energized conductor or equipment. A de-energized conductor or piece of equipment will remain energized as long as the source remains energized and de-energized equipment remains ungrounded. Properly installed temporary system safety grounds can be used to create an equipotential work zone for employees.

The induced voltage found on de-energized equipment is not static, and it can’t be bled off. System safety grounds that have been installed simply give the induced voltage a conductive connection to ground. Once grounds are removed, the induced voltage returns to exactly the same amount of voltage instantly. It is voltage of 60 cycles per second in a steady-state condition, because there is no path in which electricity can flow other than the energized, isolated conductor or equipment. If grounds are applied to de-energized conductors, the voltage immediately will collapse to near zero, but now the physics have changed and a current flow is established in the system safety grounds. The amount of current flow in ground sets is determined by the amount of induced voltage on the de-energized equipment before the grounds were installed, and the resistance of the ground set and the ground. In addition, the more ground sets that are applied to a de-energized line, the less current flow there is in each set of grounds.

Continue reading
  364 Hits
  0 Comments
Jim Vaughn, CUSP

June-July 2018 Q&A

Q: Whenever we see graphics for single-point grounding, it’s always a cluster, a connection to the neutral, a connection to a phase and a chain connecting to the other two phases. But when we check with other utilities or consultants, we see all kinds of arrangements, such as bracket grounds with a single point or two sets of single-point grounds bracketing the workspace. Where do we find the definitive arrangement, and why are there so many variations?

A: Under OSHA, the employer is solely responsible for determining how they will meet the requirements of 29 CFR 1910.269(n)(3), “Equipotential zone,” which requires that grounding of de-energized phases be installed in an arrangement that prevents employees from being exposed to differences in electrical potential. In addition to 1910.269(n)(3), there also is Appendix C to 1910.269, “Protection From Hazardous Differences in Electric Potential,” as well as IEEE 1048-2016, “IEEE Guide for Protective Grounding of Power Lines,” a consensus standard that may be considered the authoritative best practice. IEEE 1048 is filled with detailed electrical data – from modeling to application – to explain how to create equipotential protection and effective tripping of grounded circuits that may inadvertently be energized.

Continue reading
  410 Hits
  0 Comments
Jim Willis, CMAS

Rethinking Utility Security

Web-IMG_20171110_082621057

The names Nathan Baker, Zackary Randalls, Alex Boschert and William Froelich may not be familiar to you, but their stories are tragically important for utility workers. Nathan worked for East Mississippi Electric Power Association in Clarke County, Mississippi. Zackary was employed by Pacific Gas and Electric Co. (PG&E) in Fresno, California. And Alex and William worked for Laclede Gas Co. (LGC) near St. Louis. Except for Alex and William, who were employed by the same company, there is no evidence that these men knew each other or their paths ever crossed, so what thread binds them together? They were murdered while doing their jobs for their respective companies. In a horrible twist of fate, three of the men were killed within a week of each other in 2017.

In 2012, Nathan was making a routine collection/disconnect call at a residence when he was shot; his body was dumped in one location and his truck abandoned in another. In 2017, Zackary was sitting on the passenger side of a PG&E truck when a gunman walked up to the window and fired at him. A few days later, Alex and William were connecting a residential natural-gas line when a man, believed to be upset about his electricity bill, shot the two men and then turned the gun on himself.

Troubling Reminders
These stories are troubling reminders of a trend of violence aimed at utility workers. Utilities go to great lengths to ensure their employees have the skills and training necessary to safely do their jobs, but there has been less of a focus on utility worker security. This has to change. It is time to rethink utility security. From the front door of the office to the crews in the field, we must change how we go about protecting employees. Lives depend on it.

When you mention “utility” and “security” in the same sentence, many people think of cybersecurity or physical security of large-scale infrastructure sites. Many have heard about the cyberattack on the Ukrainian electricity grid in 2015 and know about the steps taken in the U.S. to secure the grid. Some conceptualize utility security as protection against attacks like the one on the PG&E Metcalf substation – a major transmission grid link – that occurred in 2013. Although these are critically important security issues, they are not the only ones. Safety managers and senior staff with safety and security responsibilities also should focus on improving the security posture of utilities at the local level. This means securing office complexes, warehouses and operational facilities; taking steps to target-harden local transmission and distribution; and improving the protection afforded to both office and field personnel, whether company or contractor.

Continue reading
  551 Hits
  0 Comments
Rob D. Adams, CLCP, CUSP

Scenario-Based Fall Protection Solutions

Web-IMG_0149

At least once in their career, nearly every safety worker in the utility business has been – or will be – faced with the need to use fall protection in an area where there is no place to tie off. In my role as a safety technician, I work with personnel in both generation and transmission business units; fall protection is needed in this line of work, but I have found that anchorage points can sometimes be few and far between. It’s a problem that clearly needs to be solved, and in this article I will share what my company has done to provide scenario-based solutions.

Scenario One
During an outage preparation meeting a couple of years ago, I was presented with some fall protection issues that employees had been dealing with. These issues specifically related to anchorage points for crews working on our main steam stop valves. Once the grating and I-beams were removed from the valve pit area, all potential anchorage points were eliminated, and thus no fall protection could be properly anchored and used in the valve pit area. Given this problem, I contacted a fall protection solutions group that came to visit our facility and gathered information regarding our anchorage concerns. While the solutions group was on-site, we also discussed possible recommendations to solve the anchorage problem. In a follow-up email after our initial meeting, the solutions group provided detailed information about the different types of equipment we could use to eliminate our anchorage issues on this particular project. The detailed equipment recommendations were then presented to our company’s personnel, and ultimately the decision was made to purchase the recommended equipment.

That recommended equipment was two advanced portable fall arrest posts, which allow us to provide overhead tie-off and utilize small self-retracting lifelines, or SRLs, so that workers in the valve pit are equipped with complete fall protection. Among the advantages of the portable fall arrest posts is how the posts are mounted. They offer several mounting applications that range from weld-on plates to beam clamps that are designed to fit 6-inch to 14-inch I-beams, meaning that we can use the posts in numerous locations throughout the company. Time and time again, the equipment has proven to be the solution to many of our fall protection needs in both generation and transmission work, including in Scenario Two below.   

Continue reading
  800 Hits
  0 Comments
Bart Castle

Three Overlooked Processes for Increasing Safe Work Practice

Web-Castle-2

Have you ever seen or heard a restaurant, vehicle dealership or retailer claim, “We care little about service”? On the contrary, don’t many of these businesses – if not most – make bold claims about the quality of their services? How many, though, take the time needed to do the work, pay attention to the details, and become known for meeting or exceeding their claims?

Now, think for a moment. Have you ever seen or heard an electric utility organization of any variety claim, “We care some about safety performance”? I doubt it. If you look at 100 electric utility website landing pages, it’s likely you will see slogans about safety. Investigate those sites further and it is common to see safety listed as a company value or guiding principle. Yet just as some retail establishments tout their high-quality service while acting in ways that make it clear that “service” is more a buzzword than a business practice, so, too, are there electric utility companies and contractors that publicly state their concern for safety while their day-to-day actions don’t back up those claims.

Job descriptions, job safety analyses, tailboard meetings, PPE and training are important components of an effective safety program. But even for companies that are truly focused on providing a safe working environment for their employees, there are at least three other components that contribute to a consistently safe workplace, yet tend to get overlooked: effective interviewing, onboarding and mentoring processes.

Continue reading
  1392 Hits
  0 Comments
Pam Tompkins, CSP, CUSA, CUSP

How to Develop a Contractor Safety Management Standard

Web-Tompkins-1

Have you ever questioned whether a contractor or subcontractor was qualified to perform electric power work? If so, you should consider developing a contractor safety management standard. This type of standard defines minimum safety requirements that contractors must adhere to when they perform work for your company.

Years ago, many electric power organizations used contractual language and a hands-off approach to establish contractor safety responsibilities. In fact, organizations hired contractors to perform work they felt was unsafe because they knew the contractor would do whatever it took to complete the job. These work practices have significantly changed throughout organizations that recognize employers share responsibility for working conditions and safety at multiemployer worksites. Utilities and contractors are adopting a shared commitment to worker and system safety within their organizations.

Regulatory Requirements
In the preamble to 29 CFR 1910.269 – the electric power generation, transmission and distribution standard – OSHA states the following: “When OSHA promulgates new safety and health standards, it does so against this background principle that employers share responsibility for working conditions, and thus for OSHA compliance, at multiemployer worksites. Therefore, when the Agency issues a new safety or health standard, it is with the intention that creating, exposing, and controlling employers at multiemployer worksites will exercise their respective responsibilities to ensure that affected employees are protected as required by the standard.”

Continue reading
  1168 Hits
  0 Comments
Hugh Hoagland and Zarheer Jooma, BSEE, M.S.

Using Arc Protective Blankets as an Engineering Control Method

Web-Capture-Ejected-Arc

While engineering controls are preferred over personal protective equipment for worker protection, many engineering controls, such as arc-resistant switchgear, require the purchase of new electrical equipment in order to fully implement them. When replacing equipment, this type of installation makes total sense, but it rarely can be the only company policy to mitigate arc flash in all facilities.

OSHA always prefers that organizations use the highest option possible on the hierarchy of controls. This is clear in the preamble to 29 CFR 1910.269, in which OSHA states the following: “NFPA 70E-2004 warned that ‘[d]ue to the explosive effect of some arc events, physical trauma injuries could occur’ … OSHA expects that the hazard analysis required by paragraph (g)(1) in the final rule will identify nonthermal hazards, including physical trauma hazards posed by flying debris, associated with employee exposure to electric arcs. … [OSHA requires] employers to address [these hazards] … [and] provide shields and barriers necessary to protect employees from physical trauma hazards. However, as noted by NFPA 70E, not all arc events pose physical trauma hazards from flying debris; therefore, this protection will not always be necessary …”

The 2018 NFPA 70E standard rightly took out the reference to 40-cal/cm² exposures posing a hazard from arc blast, since arc blast is more a function of containment and current than calories. In fact, our recent research surveyed the literature on arc blast pressure waves and found that many of the formulas did not come close to predicting our lab data from 4,000A to 12,000A (E. H. Hoagland, C. Maurice, A. Haines and A. Maurice, "Arc Flash Pressure Measurement by the Physical Method, Effect of Metal Vapor on Arc Blast," in “IEEE Transactions on Industry Applications,” vol. 53, no. 2, pp. 1576-1582, March-April 2017). New work continues to expand this knowledge and will be presented to the IEEE Electrical Safety Workshop this March in Fort Worth, Texas.

Continue reading
  1105 Hits
  0 Comments
Kate Wade

Chris Grajek Honored at 2017 USOLN Safety Award Ceremony

Web-DSC00444

On October 2, the Utility Safety & Ops Leadership Network (www.usoln.org) held its annual award ceremony at the iP Utility Safety Conference & Expo in Louisville, Ky. During the event, USOLN board members presented the John McRae Safety Leadership Award to Chris Grajek, CRSP, CUSP. Grajek currently serves as safety and work methods director for Allteck Line Contractors based in Burnaby, British Columbia.  

The John McRae Safety Leadership Award was created to honor McRae, a fourth-generation lineman who enjoyed a 42-year career before passing away July 27, 2010. He was active in the military reserves for nearly 30 years and instrumental in establishing the Massachusetts Municipal Lineman’s Association. McRae, a member of San Diego’s IBEW Local 465, spoke across the country about electrical training and went on to assist in the launch of Incident Prevention magazine.

“The John McRae award is a great honor, and even more so coming from an industry full of great leaders and professionls,” Grajek said after winning the award. “I never had the opportunity to meet John, but he sounds like an incredible leader and mentor. I take comfort in surrounding myself with those types of people whenever the opportunity presents itself.”

Grajek was selected to receive the award due to his commitment to the USOLN and its work. “Chris has dedicated himself to the Utility Safety & Ops Leadership Network by serving on the CUSP exam development committee and, more recently, the CUSP governing board,” said Carla Housh, USOLN executive director and publisher of Incident Prevention magazine. “He, along with other Canadian CUSP credential-holders, recognizes the benefits of the program and has worked to support and advance CUSP growth for Canadian utilities. Chris’ safety leadership knowledge, along with his passion for advancing the CUSP program, has had a significant impact on the success of the Northern program, and we are sincerely appreciative of his efforts.”

Continue reading
  1057 Hits
  0 Comments
Molly Hall

What Changes When You Put a Face on Safety?

Web-IMG_1352

As an experienced lineman, Gary Norland was typical of many workers: big and strong, physically tough, unafraid of any challenge. That was before he came into contact with a 12,500-volt line. That’s when everything changed. He is not alone, as many others also have experienced serious electrical contacts on the job.

The well-known fact is electrical line work can be hazardous and potentially deadly. Based on high fatal work injury rates, the U.S. Department of Labor puts it in the top 10 high-risk occupations.

In the industry, there is continuous lineworker safety training, a heavy focus on OSHA regulations and requirements, and a variety of procedural checklists. With all this emphasis on ensuring safety knowledge, one might think the serious electrical contact and flash rate among lineworkers would be declining. Yet it appears to be moving in the other direction.

One utility insurer reported a 40 percent overall drop in OSHA reportable incidents from 2006 to 2016; however, lineworker electrical contacts, particularly serious injuries and fatal contacts, are increasing. In 2016, the number of lineworker contacts grew 23 percent compared to the previous year. The number of those that were serious incidents, characterized by a fatality or an injury costing more than $100,000 in medical expenses, went up by 50 percent.

Continue reading
  1273 Hits
  0 Comments
Hugh Hoagland and Stacy Klausing, M.S.

Secondary FR Garments: Practical Solutions for Protection

Web-Image-1---Courtesy-of-DuPont

Cleanup of potentially hazardous materials and flammable contaminants can sometimes be a part of an electrical job. When workers arrive on a scene, they cannot always be sure of the exposures or contaminants they will face. In electrical work, it could be oil that contains a small number of PCBs. This oil, and other contaminants, is flammable and can affect the flame-resistant properties of garments until it is washed from the garments. Working around flammable contaminants, as well as flame and thermal hazards like arc flash potentials and flash fire potentials, often requires a PPE safety system that can be difficult to balance. Some workers may need chemical protection, flame protection or both. Secondary protection used in such circumstances, like disposable garments, can create a fast and effective way to decontaminate and clean a scene – by removal and disposal – without soiling or degrading the primary protection underneath. Because of this, disposables often are useful over daily wear. Many workers and managers assume that a chem suit is a chem suit and use the common polyester/polyethylene suits to cover their arc-rated/flame-resistant (AR/FR) gear. This can be a disaster if one of the suits ignites, melts and continues to burn, or if part of the suit becomes molten and melts onto a worker’s hands or face.

In the AR/FR PPE industry, however, disposable garments are few and far between, and the standards aren’t quite in place to help make the distinction between garments that are truly flame resistant in specific hazards versus marketing. The lightweight, thin materials typically can’t pass some of the harsh requirements set forth for garments to be used as primary materials. And even though most are not intended for primary protection, there are limited standards to guide manufacturers on appropriate tests and claims for these types of products. This is especially true for those needing multihazard protection in the outermost disposable garment. There are disposable garments on the market that boast protection from a variety of hazards, like blood-borne pathogens, dry particulates and chemicals. When flame resistance comes into play, there are even fewer options on the market.

How Far Have We Come?
Disposables have come a long way in the past few years, but we are still lacking in standards on the AR/FR side. Initially, polyester spunlace disposable garments were used for chemical protection, and they revolutionized the industry in providing secondary, fast protection that could be doffed and disposed of without concern of contamination of primary clothing; these products add extra protection to the worker at a low cost. Later, coated and sealed-seam garments on the chemical protection side were made to withstand even higher-level exposures, including chemical warfare, an unlikely scenario in the workplace. Disposables for chemical protection worked well for chemical hazards, but they were not adequate or intended for the risks from flash fires or electric arcs. Flame resistance of disposable garments still hadn’t been adequately addressed from a standards perspective, and there were misunderstandings in the market regarding FR PPE, including PPE intended to be disposable.

Continue reading
  2089 Hits
  0 Comments
Michael Stremel, CUSP

Safety Concerns When Working In and Around Manholes and Vaults

Web-IMG_0868

Some utilities – including electric, cable and communications providers – have had both underground and overhead applications for many years. However, more and more of these utilities now are either primarily installing their services underground or relocating overhead services underground, for a variety of reasons. These include reliability and protection from weather conditions, as well as minimizing exposure to equipment, vehicular traffic and farming operations. In addition to these safety concerns, utilities are installing services underground due to customer requests to improve the general appearance of the communities served by the utilities.

There are many beneficial reasons to install services underground, but there also are some downsides. Among them is the risk of personnel exposure to hazards when improper excavation practices are used. It is critical to adhere to OSHA 29 CFR 1926 Subpart P excavation practices as well as 811 and Dig Safe procedures. Another risk associated with underground facilities is that they often incorporate vaults or manholes that may be classified either as confined spaces or permit-required confined spaces. In either case, there are a number of safety concerns for which OSHA has implemented specific regulations that must be enforced to keep employees safe while working in these areas.

Safety should always be No. 1 on any job site. OSHA 1910.269(a)(2) states that all employees shall be trained in and familiar with the safety-related work practices, safety procedures and other safety requirements that pertain to their respective job duties. The agency goes on to say that employees who work in and around manholes must be trained on manhole rescue each year in order to demonstrate task proficiency. Proper documentation should be completed for the manhole training, as with any other training. The standard also states that the employee in charge shall conduct a job briefing or tailgate with all employees involved before the start of each job. At a minimum, the briefing should address the five areas required by the OSHA standard: hazards associated with the job, special precautions, energy-source controls, work procedures involved and personal protective equipment requirements.

Continue reading
  3324 Hits
  0 Comments
Jim Vaughn, CUSP

Train the Trainer 101: Practical Aviation for Power-Line Applications

It was a little over 40 years ago that a Vietnam veteran helicopter pilot in Florida made the first live-line contact with a live transmission circuit, bringing a quantum leap for power-line applications using helicopter methods. The FAA regulates what they call “rotorcraft” work with specific qualifications for pilots, flight crews and the airships and auxiliary equipment used.

Many utilities and contractors think helicopters – or HCs, in flyers’ lingo – are for use on difficult projects because of the expense. But I have been working with contractors for the last 15 years who recognize the value of HCs in construction and use them as often as possible. An hour of HC time may cost the same as the monthly rental of a bucket truck, but when you can clip, space, dame and ball 20 times the structures in a day over bucket access, the expense really makes sense. I also am aware that some contractors and utilities think HC use raises risk. I know that some utility clients prohibit HCs on their properties while others actively assist their contractors by prequalifying HC companies.

The primary use of HCs has been to string rope or, in some cases, hard-line for pulling wire in transmission construction using HC blocks. These blocks are equipped with a spring-loaded gate at the top of the frame. The gate has extensions that guide the rope into the sheave, provided the pilot is good enough. It looks easier than it is. Since Mike Kurtgis of USA Airmobile put his ship on a hot line in Florida, skid and rope-suspended work, inspection and insulator washing have continued to advance as accepted work practices. The FAA refers to working from a skid or rope (short haul) as “human external load,” or HEL. By some it is called the most dangerous work method in the line industry. In fact, even the FAA has a sense of humor about it, as noted in their wording of a safety requirement in the HEL rules. In guidance document FSIMS 8900.1, Vol. 3, Ch. 51, the FAA provides examples of the types of persons that can be carried on an HC skid – they include movie camera operators and clowns as two of those examples. We always assumed that the lineman with the nerve to work from the skid was not the camera operator.

Continue reading
  2183 Hits
  0 Comments
Danny Raines, CUSP

Voice of Experience: Distribution Cover-Up: Why Wouldn’t You Use It?

Over the next few installments of “Voice of Experience,” I’ll be reviewing some accidents that have taken place in the electric utility industry. I’ve had many requests for information about incident investigations and would like to share some details in hopes of preventing similar accidents in the future. Distribution cover-up will be the focus for this issue’s column.

Approximately half – or even more – of accidents that result in flashes and electrical contacts are the result of poor cover-up or total lack of rated protective cover. Why would a lineworker not take the time to install protective cover that would assure a safe work area? According to statistics and accident reports, the industry suffers an average of one contact or flash every week. That needs to stop.

Investigations into many accidents, some of which involved fatal contact with system or source voltages, have revealed that failure to cover up all differences of potential in the immediate work area was the common denominator in most flashes and contacts. If you are or your company is following the minimum requirements found in OSHA 29 CFR 1910.269(l), “Working on or near exposed energized parts,” it is simply not enough to ensure an employee is totally protected from differences of potential in the work area.

The human body essentially is a 1,000-ohm resistor in an electrical circuit. When a lineworker fails to cover energized parts as well as differences of potential in the immediate work area, as little as a 50-volt AC electrical source may enter the body. If the current path crosses the heart, as few as 40 to 50 milliamps can induce atrial fibrillation, cause the heart to stop sinus rhythm and electrocute the worker. The industry is quite familiar with medium-voltage contacts but many times lacks respect for low-voltage contacts that can be just as fatal.

Continue reading
  1933 Hits
  0 Comments
Brian Bourquin

Rope Access Work in Today’s Line Trade

Web-Rescue_v1.00_00_33_20.Still009

Rope has always been at the core of many operations and is the principal means of removing an injured person from a structure or manhole. In recent years, labor laws have revised and expanded expectations, particularly for worker fall protection on towers. The quest for methods to accommodate these rules has created opportunities for new applications of rope techniques, introducing wider use of rope access and rope descent technologies into the line industry.

Rope access describes rope-use techniques that have evolved from centuries-old rope applications incorporating maritime, construction and, in particular, mountain climbing or controlled descent methods. In the firefighting world, rescue using rope is referred to as “high-angle” or “technical” rescue. Rope access has been used for centuries in construction, and most readers today are familiar with scenes of lumberjacks, wind energy blade inspections, and dam and bridge inspectors suspended over the sides of structures.

In the line trade, we traditionally think of rope in terms of its use as a handline, which, in the event of an emergency, doubles as a rescue line. This rescue technique is still as relevant now as it was in the late 19th century, as the idea to plan your rescues is not a new one. Any differences between rope rescue today and rope rescue in the early days of power lines are primarily due to technological advances. One example of these advances is Buckingham Manufacturing Co.’s OX BLOCK, which is used for hurt-man rescue and self-rescue, as well as lowering, raising and snubbing loads.

To the employer researching rope access and controlled descent techniques for workers, it is important that line personnel be involved in the research process so that the techniques, tools and training that are adopted effectively match the needs of the workplace. Keep in mind that rope access is not a substitute for all work tasks – it is simply another tool. Both training and research are critical for employers and employees considering rope access techniques; this includes the review and assessment of tools and other items currently available on the market, including rescue-rated blocks and property-rated handlines.

Continue reading
  2107 Hits
  0 Comments
Jim Vaughn, CUSP

August 2017 Q&A

Q: We are a contractor and were recently working in a manhole with live primary cables running through it. We were cited in an audit by a client’s safety team for not having our people in the manhole tied off to rescue lines. We had a tripod up and a winch ready for the three workers inside. What did we miss?

A: This question has come up occasionally, and it’s usually a matter of misunderstanding the OSHA regulations. The latest revision of the rule has modified the language, but following is the relevant regulation. Look for the phrases “safe work practices,” “safe rescue” and “enclosed space.”

1910.269(e)(1)
Safe work practices. The employer shall ensure the use of safe work practices for entry into, and work in, enclosed spaces and for rescue of employees from such spaces.

1910.269(e)(2)
Training. Each employee who enters an enclosed space or who serves as an attendant shall be trained in the hazards of enclosed-space entry, in enclosed-space entry procedures, and in enclosed-space rescue procedures.

1910.269(e)(3)
Rescue equipment. Employers shall provide equipment to ensure the prompt and safe rescue of employees from the enclosed space.

This rule deals with enclosed spaces, not other spaces referenced in 29 CFR 1910.269(t), “Underground electrical installations.” Enclosed spaces are not, as many think, spaces with energized cables inside. In fact, the definition of an enclosed space has no mention of energized cables. What it does have is the single criterion for an enclosed space: Under normal conditions, it does not contain a hazardous atmosphere, but it may contain a hazardous atmosphere under abnormal conditions.

Continue reading
  1576 Hits
  0 Comments
Lee Marchessault, CUSP

Making Sense of Protection Requirements for Open-Air Arc Flash Hazards

Arc-Flash-Web

Electric utility workers face complex, high-risk electrical hazards nearly every day. Information about shock hazards – which may come from impressed voltage, residual energy, induction, objectionable current flow in a grounding system or stored energy – has been taught to many of us for quite some time, as have the methods of assessing them.

On the other hand, arc flash hazard assessments are still relatively new to us. In the past, most of us knew that an arc flash could potentially occur during the course of performing our tasks, but the level of the flash and the PPE requirements – other than wearing 100 percent cotton – were not seriously considered in our day-to-day activities until approximately 15 to 20 years ago. To provide more concrete guidelines, OSHA published new regulations in April 2014, with more recent enforcement dates. Instead of making a best guess about PPE, the industry now has a reasonable approach to providing adequate PPE for utility employees who are tasked with performing open-air work. Once a utility completes the required arc flash analysis, develops a policy based on the analysis results and adequately conducts training for affected field personnel, the job of assessing risk and determining PPE levels can easily be incorporated into the daily job briefing. The goal is to make the assessment data easy to access and understand in order to provide effective protection for all workers.

Causes and Severity Levels of Arc Flash Events
An arc flash is the result of either a short circuit during which two energized parts of different potentials (phases) make contact, or a ground fault where an energized part and a grounded conductive part of a different potential make contact. An arc flash event may be caused by a failure of electrical apparatus, potentially due to lack of maintenance, or by worker error, perhaps due to an employee moving conductive parts near energized parts or leaving conductive tools in an energized work area. It’s important to note that differences in potential must always be effectively isolated by distance (air) or insulated barriers.

Continue reading
  6054 Hits
  0 Comments

KNOWLEDGE, INSIGHT & STRATEGY FOR UTILITY SAFETY & OPS PROFESSIONALS

Incident Prevention is produced by Utility Business Media, Inc.

360 Memorial Drive, Suite 10, Crystal Lake, IL 60014 | 815.459.1796 | This email address is being protected from spambots. You need JavaScript enabled to view it.
© 2004 - 2018 Incident Prevention. All Rights Reserved.