Hugh Hoagland and Stacy Klausing, M.S.

Secondary FR Garments: Practical Solutions for Protection

Web-Image-1---Courtesy-of-DuPont

Cleanup of potentially hazardous materials and flammable contaminants can sometimes be a part of an electrical job. When workers arrive on a scene, they cannot always be sure of the exposures or contaminants they will face. In electrical work, it could be oil that contains a small number of PCBs. This oil, and other contaminants, is flammable and can affect the flame-resistant properties of garments until it is washed from the garments. Working around flammable contaminants, as well as flame and thermal hazards like arc flash potentials and flash fire potentials, often requires a PPE safety system that can be difficult to balance. Some workers may need chemical protection, flame protection or both. Secondary protection used in such circumstances, like disposable garments, can create a fast and effective way to decontaminate and clean a scene – by removal and disposal – without soiling or degrading the primary protection underneath. Because of this, disposables often are useful over daily wear. Many workers and managers assume that a chem suit is a chem suit and use the common polyester/polyethylene suits to cover their arc-rated/flame-resistant (AR/FR) gear. This can be a disaster if one of the suits ignites, melts and continues to burn, or if part of the suit becomes molten and melts onto a worker’s hands or face.

In the AR/FR PPE industry, however, disposable garments are few and far between, and the standards aren’t quite in place to help make the distinction between garments that are truly flame resistant in specific hazards versus marketing. The lightweight, thin materials typically can’t pass some of the harsh requirements set forth for garments to be used as primary materials. And even though most are not intended for primary protection, there are limited standards to guide manufacturers on appropriate tests and claims for these types of products. This is especially true for those needing multihazard protection in the outermost disposable garment. There are disposable garments on the market that boast protection from a variety of hazards, like blood-borne pathogens, dry particulates and chemicals. When flame resistance comes into play, there are even fewer options on the market.

How Far Have We Come?
Disposables have come a long way in the past few years, but we are still lacking in standards on the AR/FR side. Initially, polyester spunlace disposable garments were used for chemical protection, and they revolutionized the industry in providing secondary, fast protection that could be doffed and disposed of without concern of contamination of primary clothing; these products add extra protection to the worker at a low cost. Later, coated and sealed-seam garments on the chemical protection side were made to withstand even higher-level exposures, including chemical warfare, an unlikely scenario in the workplace. Disposables for chemical protection worked well for chemical hazards, but they were not adequate or intended for the risks from flash fires or electric arcs. Flame resistance of disposable garments still hadn’t been adequately addressed from a standards perspective, and there were misunderstandings in the market regarding FR PPE, including PPE intended to be disposable.

Continue reading
Rate this blog entry:
105 Hits
0 Comments
Michael Stremel, CUSP

Safety Concerns When Working In and Around Manholes and Vaults

Web-IMG_0868

Some utilities – including electric, cable and communications providers – have had both underground and overhead applications for many years. However, more and more of these utilities now are either primarily installing their services underground or relocating overhead services underground, for a variety of reasons. These include reliability and protection from weather conditions, as well as minimizing exposure to equipment, vehicular traffic and farming operations. In addition to these safety concerns, utilities are installing services underground due to customer requests to improve the general appearance of the communities served by the utilities.

There are many beneficial reasons to install services underground, but there also are some downsides. Among them is the risk of personnel exposure to hazards when improper excavation practices are used. It is critical to adhere to OSHA 29 CFR 1926 Subpart P excavation practices as well as 811 and Dig Safe procedures. Another risk associated with underground facilities is that they often incorporate vaults or manholes that may be classified either as confined spaces or permit-required confined spaces. In either case, there are a number of safety concerns for which OSHA has implemented specific regulations that must be enforced to keep employees safe while working in these areas.

Safety should always be No. 1 on any job site. OSHA 1910.269(a)(2) states that all employees shall be trained in and familiar with the safety-related work practices, safety procedures and other safety requirements that pertain to their respective job duties. The agency goes on to say that employees who work in and around manholes must be trained on manhole rescue each year in order to demonstrate task proficiency. Proper documentation should be completed for the manhole training, as with any other training. The standard also states that the employee in charge shall conduct a job briefing or tailgate with all employees involved before the start of each job. At a minimum, the briefing should address the five areas required by the OSHA standard: hazards associated with the job, special precautions, energy-source controls, work procedures involved and personal protective equipment requirements.

Continue reading
Rate this blog entry:
65 Hits
0 Comments
Jim Vaughn, CUSP

Train the Trainer 101: Practical Aviation for Power-Line Applications

It was a little over 40 years ago that a Vietnam veteran helicopter pilot in Florida made the first live-line contact with a live transmission circuit, bringing a quantum leap for power-line applications using helicopter methods. The FAA regulates what they call “rotorcraft” work with specific qualifications for pilots, flight crews and the airships and auxiliary equipment used.

Many utilities and contractors think helicopters – or HCs, in flyers’ lingo – are for use on difficult projects because of the expense. But I have been working with contractors for the last 15 years who recognize the value of HCs in construction and use them as often as possible. An hour of HC time may cost the same as the monthly rental of a bucket truck, but when you can clip, space, dame and ball 20 times the structures in a day over bucket access, the expense really makes sense. I also am aware that some contractors and utilities think HC use raises risk. I know that some utility clients prohibit HCs on their properties while others actively assist their contractors by prequalifying HC companies.

The primary use of HCs has been to string rope or, in some cases, hard-line for pulling wire in transmission construction using HC blocks. These blocks are equipped with a spring-loaded gate at the top of the frame. The gate has extensions that guide the rope into the sheave, provided the pilot is good enough. It looks easier than it is. Since Mike Kurtgis of USA Airmobile put his ship on a hot line in Florida, skid and rope-suspended work, inspection and insulator washing have continued to advance as accepted work practices. The FAA refers to working from a skid or rope (short haul) as “human external load,” or HEL. By some it is called the most dangerous work method in the line industry. In fact, even the FAA has a sense of humor about it, as noted in their wording of a safety requirement in the HEL rules. In guidance document FSIMS 8900.1, Vol. 3, Ch. 51, the FAA provides examples of the types of persons that can be carried on an HC skid – they include movie camera operators and clowns as two of those examples. We always assumed that the lineman with the nerve to work from the skid was not the camera operator.

Continue reading
Rate this blog entry:
88 Hits
0 Comments
Danny Raines, CUSP

Voice of Experience: Distribution Cover-Up: Why Wouldn’t You Use It?

Over the next few installments of “Voice of Experience,” I’ll be reviewing some accidents that have taken place in the electric utility industry. I’ve had many requests for information about incident investigations and would like to share some details in hopes of preventing similar accidents in the future. Distribution cover-up will be the focus for this issue’s column.

Approximately half – or even more – of accidents that result in flashes and electrical contacts are the result of poor cover-up or total lack of rated protective cover. Why would a lineworker not take the time to install protective cover that would assure a safe work area? According to statistics and accident reports, the industry suffers an average of one contact or flash every week. That needs to stop.

Investigations into many accidents, some of which involved fatal contact with system or source voltages, have revealed that failure to cover up all differences of potential in the immediate work area was the common denominator in most flashes and contacts. If you are or your company is following the minimum requirements found in OSHA 29 CFR 1910.269(l), “Working on or near exposed energized parts,” it is simply not enough to ensure an employee is totally protected from differences of potential in the work area.

The human body essentially is a 1,000-ohm resistor in an electrical circuit. When a lineworker fails to cover energized parts as well as differences of potential in the immediate work area, as little as a 50-volt AC electrical source may enter the body. If the current path crosses the heart, as few as 40 to 50 milliamps can induce atrial fibrillation, cause the heart to stop sinus rhythm and electrocute the worker. The industry is quite familiar with medium-voltage contacts but many times lacks respect for low-voltage contacts that can be just as fatal.

Continue reading
Rate this blog entry:
66 Hits
0 Comments
Brian Bourquin

Rope Access Work in Today’s Line Trade

Web-Rescue_v1.00_00_33_20.Still009

Rope has always been at the core of many operations and is the principal means of removing an injured person from a structure or manhole. In recent years, labor laws have revised and expanded expectations, particularly for worker fall protection on towers. The quest for methods to accommodate these rules has created opportunities for new applications of rope techniques, introducing wider use of rope access and rope descent technologies into the line industry.

Rope access describes rope-use techniques that have evolved from centuries-old rope applications incorporating maritime, construction and, in particular, mountain climbing or controlled descent methods. In the firefighting world, rescue using rope is referred to as “high-angle” or “technical” rescue. Rope access has been used for centuries in construction, and most readers today are familiar with scenes of lumberjacks, wind energy blade inspections, and dam and bridge inspectors suspended over the sides of structures.

In the line trade, we traditionally think of rope in terms of its use as a handline, which, in the event of an emergency, doubles as a rescue line. This rescue technique is still as relevant now as it was in the late 19th century, as the idea to plan your rescues is not a new one. Any differences between rope rescue today and rope rescue in the early days of power lines are primarily due to technological advances. One example of these advances is Buckingham Manufacturing Co.’s OX BLOCK, which is used for hurt-man rescue and self-rescue, as well as lowering, raising and snubbing loads.

To the employer researching rope access and controlled descent techniques for workers, it is important that line personnel be involved in the research process so that the techniques, tools and training that are adopted effectively match the needs of the workplace. Keep in mind that rope access is not a substitute for all work tasks – it is simply another tool. Both training and research are critical for employers and employees considering rope access techniques; this includes the review and assessment of tools and other items currently available on the market, including rescue-rated blocks and property-rated handlines.

Continue reading
Rate this blog entry:
562 Hits
0 Comments
Jim Vaughn, CUSP

August 2017 Q&A

Q: We are a contractor and were recently working in a manhole with live primary cables running through it. We were cited in an audit by a client’s safety team for not having our people in the manhole tied off to rescue lines. We had a tripod up and a winch ready for the three workers inside. What did we miss?

A: This question has come up occasionally, and it’s usually a matter of misunderstanding the OSHA regulations. The latest revision of the rule has modified the language, but following is the relevant regulation. Look for the phrases “safe work practices,” “safe rescue” and “enclosed space.”

1910.269(e)(1)
Safe work practices. The employer shall ensure the use of safe work practices for entry into, and work in, enclosed spaces and for rescue of employees from such spaces.

1910.269(e)(2)
Training. Each employee who enters an enclosed space or who serves as an attendant shall be trained in the hazards of enclosed-space entry, in enclosed-space entry procedures, and in enclosed-space rescue procedures.

1910.269(e)(3)
Rescue equipment. Employers shall provide equipment to ensure the prompt and safe rescue of employees from the enclosed space.

This rule deals with enclosed spaces, not other spaces referenced in 29 CFR 1910.269(t), “Underground electrical installations.” Enclosed spaces are not, as many think, spaces with energized cables inside. In fact, the definition of an enclosed space has no mention of energized cables. What it does have is the single criterion for an enclosed space: Under normal conditions, it does not contain a hazardous atmosphere, but it may contain a hazardous atmosphere under abnormal conditions.

Continue reading
Rate this blog entry:
174 Hits
0 Comments
Lee Marchessault, CUSP

Making Sense of Protection Requirements for Open-Air Arc Flash Hazards

Arc-Flash-Web

Electric utility workers face complex, high-risk electrical hazards nearly every day. Information about shock hazards – which may come from impressed voltage, residual energy, induction, objectionable current flow in a grounding system or stored energy – has been taught to many of us for quite some time, as have the methods of assessing them.

On the other hand, arc flash hazard assessments are still relatively new to us. In the past, most of us knew that an arc flash could potentially occur during the course of performing our tasks, but the level of the flash and the PPE requirements – other than wearing 100 percent cotton – were not seriously considered in our day-to-day activities until approximately 15 to 20 years ago. To provide more concrete guidelines, OSHA published new regulations in April 2014, with more recent enforcement dates. Instead of making a best guess about PPE, the industry now has a reasonable approach to providing adequate PPE for utility employees who are tasked with performing open-air work. Once a utility completes the required arc flash analysis, develops a policy based on the analysis results and adequately conducts training for affected field personnel, the job of assessing risk and determining PPE levels can easily be incorporated into the daily job briefing. The goal is to make the assessment data easy to access and understand in order to provide effective protection for all workers.

Causes and Severity Levels of Arc Flash Events
An arc flash is the result of either a short circuit during which two energized parts of different potentials (phases) make contact, or a ground fault where an energized part and a grounded conductive part of a different potential make contact. An arc flash event may be caused by a failure of electrical apparatus, potentially due to lack of maintenance, or by worker error, perhaps due to an employee moving conductive parts near energized parts or leaving conductive tools in an energized work area. It’s important to note that differences in potential must always be effectively isolated by distance (air) or insulated barriers.

Continue reading
Rate this blog entry:
3907 Hits
0 Comments
Naira Campbell-Kyureghyan, Ph.D.

Injury Risks Associated with Climbing in the Wind Energy Generation Industry

Figure-3D-Web

The growth of the wind energy generation industry in the U.S. has been phenomenal. According to the American Wind Energy Association, at the end of 2016 there were over 52,000 utility-grade wind turbines operational in more than 40 states, with a total capacity of 83,000 megawatts. The Global Wind Energy Council’s latest report shows that the U.S. has the second-largest wind power capacity, after China, with 16.9 percent of the world total, and employs over 100,000 people directly or indirectly. As the number of wind turbine towers grows, so does the number of people involved in their maintenance and repair. In 2015, the U.S. Bureau of Labor Statistics projected that employment of wind turbine service technicians would grow 108 percent between 2014 and 2024. There were approximately 4,400 wind turbine service technician jobs as of 2014.

Wind turbine tower heights also are increasing, with the tallest tower currently in the U.S. measuring 379 feet hub height, and even taller towers have been installed elsewhere in the world. While some towers are outfitted with service lifts, in the majority of towers personnel must climb fixed ladders to perform both routine and unusual operations. The increasing numbers and heights of towers mean more workers climbing ever greater distances.

Research studies conducted at the University of Wisconsin-Milwaukee (UWM) that have specifically investigated the renewable energy sector, including wind power generation, along with data from OSHA and the Bureau of Labor Statistics, have identified multiple risks to workers as a result of climbing fixed ladders. Strains and sprains, falls, overexertion and even fatalities were reported to be possible direct consequences of climbing and working at heights during both the construction and maintenance of wind turbines. Indirect risks also were identified, including potentially being electrocuted from contact with high-voltage cables and being struck by an object or caught between objects. Although power generation injury statistics are not separated by fuel source, 2015 Bureau of Labor Statistics’ data indicates that there were three fatal falls in the power generation industry, and 550 falls with nonfatal injuries. Data from the United Kingdom shows 163 total accidents in the wind power industry in 2016, including five fatal accidents. This data generally is assumed to vastly underreport the actual numbers, which may be 10 times higher.

Continue reading
Rate this blog entry:
3558 Hits
0 Comments
Jim Vaughn, CUSP

Train the Trainer 101: Training and Verification Requirements for the Safety of Electric Utility Workers

A number of years ago I investigated a pole-top flash that took place during a transfer. The flash occurred when an improperly installed blanket left a dead-end flange exposed on the backside of the metal pole-top. During untying, the tie-wire contacted the exposed flange. No one was hurt. The issue was the lineman’s selection and installation of the blanket. The foreman assumed the lineman was experienced and competent to perform the three-phase transfer with minimal instruction. The problem was the lineman had spent the last several years on a service truck, had little transfer experience and had never worked a steel distribution pole. The foreman’s assumption was based on the fact that the lineman came from the IBEW hall. Even though they had never met, he assumed the lineman was sufficiently experienced – and so the root cause for the incident was established.

Training and verification of training for new, already-trained employees is another subject that has caused headaches for those professionals charged with OSHA training compliance and the employer liability that goes with it. OSHA, just like CanOSH, the agency’s Canadian counterpart, knows that training plays a huge role in incident prevention. It should be obvious that training prevents incidents, but the investigation of incidents across the continent proves that is not so. I have long said that the quality of your safety program and all of the component procedures, rules and policies that go with it, no matter how innovative and well-written, are only as good as the training you provide to the workforce. A safety program is supposed to protect the workforce first and the employer second. How can that happen if the workforce doesn’t know what’s in the program? And if the workforce doesn’t know what’s in the program, how does the employer expect the safety program to protect the employer?

Continue reading
Rate this blog entry:
3633 Hits
0 Comments
Danny Raines, CUSP

Voice of Experience: Qualified and Task-Specific Electrical Worker Training

The revised OSHA 29 CFR 1910.269 standard has now been in place for three years. In making the revisions, OSHA replaced older, passive language that left much to be understood with more objective language that clarifies the meaning and intent of the regulation. The standard is now easier to understand and sets the expectations for employers and employees.

There were some major changes made to the standard, as we all know. Several more subtle changes also were included and have been discussed much less, but they still have had a significant impact on the regulation. In this installment of “Voice of Experience,” I want to focus on one of these more subtle changes that I believe has a tremendous effect on the training requirements found in 1910.269(a)(2). The 1910.269 standard published in 1994 was straightforward, describing what was required in order for an employer to determine that an employee was a qualified worker. By and large, the industry believed that if an employee had the required training, he or she could be determined to be qualified. Now, per paragraph 1910.269(a)(2) of the revised 2014 standard, all employees performing work covered by the section shall be trained as follows:
• Each employee shall be trained in, and familiar with, the safety-related work practices, safety procedures, and other safety requirements in this section that pertain to his or her job assignments. (1910.269(a)(2)(i)(A))
• Each employee shall also be trained in and familiar with any other safety practices, including applicable emergency procedures (such as pole-top and manhole rescue), that are not specifically addressed by this section but that are related to his or her work and are necessary for his or her safety. (1910.269(a)(2)(i)(B))
• The degree of training shall be determined by the risk to the employee for the hazard involved. (1910.269(a)(2)(i)(C))

Continue reading
Rate this blog entry:
1824 Hits
0 Comments
Jim Vaughn, CUSP

June 2017 Q&A

Q: We have a group reviewing our personal protective grounding procedures, and they are asking if we should be grinding the galvanized coating off towers when we install the phase grounding connections. What are your thoughts?

A: In addition to your question, we also recently received another question about connecting to steel for bonding, so we’ll address both questions in this installment of the Q&A. Your question is about the effectiveness of grounding to towers, and the other question is about the effectiveness of EPZs created on steel towers. We’ll discuss the grounding question first and then move on to the EPZ question.

As to grounding effectiveness, we have two thoughts here – one simple and one that likely will raise more questions than we can resolve in these pages.

The simple thought is this: Consider grounding to the circuit static. It’s difficult to reach but doing so makes it easier to create an electrical connection. Using the system static shares current with adjacent structures and reduces current on the structure being worked. Dividing current among adjacent structures also reduces ground potential’s risks to workers at the foot of the tower. See the following Q&A regarding EPZ if you are grounding to the static.

As to connecting to the tower, grinding off the galvanized coating opens the underlying steel to corrosion and would need to be replaced after the operation. We have asked how utilities make connections and found that most use a flat clamp to a brushed plate or insulator bracket, or a C-clamp to a brushed bolt or step. Either method is a good one. Others follow one of the recommendations in IEEE 1048, “IEEE Guide for Protective Grounding of Power Lines,” 9.2.1.1 for lattice using a ground cluster. The cluster serves two purposes: providing a clamping connection and keeping the clamps close together.

Fortunately, the structure connection can be installed by hand, making the cleaning and mechanical security of the connection pretty reliable. There are several considerations to discuss that should be part of the training provided to lineworkers who make these connections.

Continue reading
Rate this blog entry:
351 Hits
0 Comments
Tony Barton

Confined Space Training: It Has to Be Done Right the First Time

Confined Space Training: It Has to Be Done Right the First Time

Entering and working in confined spaces is serious business. In the years I’ve been a safety professional, I’ve been involved with several hundred confined space entries, including overseeing entries into most of the confined space examples listed in the scope of OSHA’s “Confined Spaces in Construction” standard. A number of times I’ve been called to the scene of a confined space entry where the entrants had been evacuated because of alarms from direct-reading portable gas monitors. Some of these alarms were caused by degradation of atmospheric conditions, while others were due to operator error. Thankfully, I’ve never been called to a scene involving a worker who was down and overcome in a confined space, but I must admit that where confined space entries are involved, such a situation is my worst nightmare.

Over the last few decades, part of my work also has included training hundreds of workers in confined space entry. Typically training covers two major components: teaching trainees the regulatory requirements of the standard for confined space entry, and training them about their employer’s specific processes and procedures for conducting confined space entries in compliance with the standard. However, as Jarred O’Dell, CSP, CUSP, noted in his February 2016 Incident Prevention article, “Trenching by the Numbers” (see http://incident-prevention.com/ip-articles/trenching-by-the-numbers), “This is a great approach but perhaps an incomplete one. Truly impactful safety training typically includes a third component: sharing of personal experience.” In this article, I want to share some of my personal experiences and goals as they relate to training workers on the topic of confined space entry, with the hope that I can offer some useful takeaways to other trainers and utility safety professionals.

A Major Motivator
I’ve always been passionate about teaching confined space entry, and my major motivator is this: If workers aren’t properly trained to enter confined spaces, they might not be able to go home at some point. I end every training session I conduct, regardless of the topic or skill level of those I’m training, by explaining to the trainees that the most important thing they will do each and every day is to safely go home to their families, their friends, their plans, their dreams – their lives.

I want my trainees to know that the reason we have confined space procedures, training, permits, direct-reading portable gas monitors and non-entry rescue equipment is because people can die in confined spaces. I also want them to know that many people who have died in confined spaces weren’t even the entrants. Nearly half of those who have died in a confined space situation were would-be rescuers. I want my trainees to care enough about safely going home at the end of the day that they will perform the necessary confined-space tasks correctly the first time, based on the training they have received, because I’ve found a way to make this training important to them on a personal level.

Continue reading
Rate this blog entry:
4084 Hits
0 Comments
Connie L. Muncy, CIH, CUSP, MS, REM

Shining a Light on Ventilation Systems and Surveys in the Electric Power Industry

Shining a Light on Ventilation Systems and Surveys in the Electric Power Industry

It takes a wide variety of activities – some obvious and others not so obvious – to keep electric utility operations humming along. With maintenance facilities and power plants in particular, there are sometimes unidentified exposures that grow as the facilities grow. In other scenarios, our understanding of exposures or emerging regulations requires the need for a professional hygienist to assess and remediate exposures. Ventilation surveys, which can detect ventilation system failures, are a critical but often overlooked tool that should be used to maintain safe, healthy operations, whether those are power generation operations, transmission and distribution operations, or peaker operations during which power is produced during periods of peak usage. All of these operations require appropriate ventilation to control atmospheric hazards. Failure to recognize the importance of maintaining and periodically checking ventilation systems may impart substantial hidden risk to personnel, facilities and operations.

However, it is not uncommon to see operations that lack the needed systems; are serviced by jury-rigged systems that do not meet operational needs; or are serviced by well-engineered systems that over time have fallen into disrepair due to a lack of ventilation surveys and preventive maintenance.

How is it that these matters fall between the cracks?

It is easy for occupational health to take a back seat to occupational safety or other priorities. Poor change management can be blamed if a new system is installed and there is either no follow-up or incomplete follow-up for hazard control concerns. A simple lack of subject matter expertise within an organization could be the problem; perhaps there is no knowledgeable industrial hygienist on staff and an overwhelmed safety professional wearing multiple hats gravitates away from his area of lesser expertise. In some cases, chemical exposures take years to become evident and manifest symptoms. As such, they are a lower priority than more high-visibility issues, like falls from height or arc flash. Or, it may be that ancillary activities are out of sight and out of mind, and not recognized as a priority for hazard control.

Regardless of the reason, occupational health and safety cannot be maintained without appropriate attention to ventilation matters. The purpose of this article is to shine a light on these matters and encourage organizations lacking the needed expertise to learn to handle them appropriately.

Continue reading
Rate this blog entry:
3451 Hits
0 Comments
Damon Beck

Marking a Safety Milestone at Silicon Valley Power

Marking a Safety Milestone at Silicon Valley Power

Clear minds, focused on the task at hand. Strict attention to details and checklists critical to the job. Precise and continual communication among the field, management and control teams. Ongoing training and safety manual review. Looking out for one another. Trust in the workforce’s skills with no micromanagement and with the boss’ door always open.

Such are the written – and unwritten – rules governing the field forces of Silicon Valley Power, the City of Santa Clara, Calif.’s municipal electric utility that recently marked a company milestone: 1,000 days without a lost day of work due to injury or work-related illness.

SVP serves 54,000 customers, including technology industry giants such as Intel, Owens Corning, NVIDIA, Texas Instruments and Applied Materials, and high-profile customers such as the San Francisco 49ers and Levi’s Stadium. Local generation resources include a 147-megawatt combined cycle natural gas plant, landfill methane gas and 20 megawatts of solar installations. Over 692 megawatts of renewable energy are imported from hydro, wind and geothermal partnerships and power purchase agreements; total renewables represent over 40 percent of the company’s power mix.

Health and Safety Success
SVP’s managers firmly believe that the company’s health and safety success begins with a multitude of safety briefings. These include weekly management conferences, mandatory shift start meetings and tailboarding before every job, regardless of scope.

And once the job begins, urgency is effectively tempered by caution. If safety may be jeopardized, there is never any pressure from the city or SVP management to hurry a job or push to restore power during an outage. Safety is first whether it’s in a project planning stage or when responding to an outage. Customer communications during an outage, including social media postings, stress that SVP will restore power as fast as its field force can safely do so.

Continue reading
Rate this blog entry:
3535 Hits
0 Comments
Peter Tyschenko and Michael Meathe

Using Thermography for Underground Worker Safety

Using Thermography for Underground Worker Safety

For more than 100 years, Commonwealth Edison – commonly known as ComEd – has been powering the lives of customers across Northern Illinois, including those in Chicago, a city that has thousands of circuit miles of medium-voltage distribution cables installed in conduit and manhole systems.

Over the decades, ComEd’s underground cable splicers have experienced failures of distribution cable system components, including cables, joints and terminations, while employees were working in manholes and vaults. A large number of cable system failures occurred at cable joints in underground manholes. Some of these failures were due to degradation of the electrical connection inside these joints.

One of the hazards associated with a cable system failure is the risk of employee exposure to an electrical arc flash. This type of event can result in temperatures in excess of 35,000 degrees Fahrenheit, producing a blinding flash and causing aluminum and copper cabling components to instantly expand. If an employee is working adjacent to equipment affected by the blast, the heat generated can cause third-degree burns, and the pressure wave can damage hearing and throw the worker into the surrounding structure.

A Culture of Safety
Past experience at ComEd has demonstrated that thermal issues with joints are centered on mechanical connections, typically those that are crimped. Such mechanical connections are used in pre-manufactured joints.

According to OSHA 29 CFR 1910.269(t)(7)(i), “hot localized surface temperatures of cables or joints” are an abnormality that may be indicative of an impending fault. Unless the employer can demonstrate that the conditions could not lead to a fault, “the employer shall deenergize the cable with the abnormality before any employee may work in the manhole or vault, except when service-load conditions and a lack of feasible alternatives require that the cable remain energized.” However, “employees may enter the manhole or vault provided the employer protects them from the possible effects of a failure using shields or other devices that are capable of containing the adverse effects of a fault.”

Continue reading
Rate this blog entry:
3674 Hits
0 Comments
Jim Vaughn, CUSP

Train the Trainer 101: Addressing Common Fall Protection Questions and Concerns

To begin this article, I want to offer a disclaimer. One of the reasons the “Train the Trainer 101” series was created is to examine the practical aspects of compliance as they relate to the utility industry. We do that by reading the statutes, looking at how OSHA interprets and enforces the rules, reviewing what the consensus standards state and then determining practical ways the employer can manage and comply with the rules. Sometimes I raise an eyebrow, but in working with the group of professionals who review every article published in Incident Prevention’s pages, we endeavor to ensure the advice given is not merely good but also compliant. With that said, in the following pages I am going to address some fall protection issues that iP has received many questions about in recent weeks. Several of them are driven by the latest OSHA final rule on walking and working surfaces, which contains some new language and expanded rules on fall protection.

Who is Responsible?
I get a lot of questions about fall protection that stem from a salesperson telling an employer they need to do a certain something in order to comply with OSHA. First, a nod to our partners in the industry: the vendors and manufacturers. They have done a great job meeting the needs of the employer by innovating, creating and often collaborating with the industry to get the tools we need into the field. Work with your vendors and manufacturer representatives, but be clear about your responsibilities in the relationship. Understand that there are no OSHA-approved devices for sale in any marketplace. OSHA does not approve equipment for manufacturers even though they may comment on a method of compliance if a written request is made by an employer. Even then, OSHA’s language to the employer often is something such as, “OSHA does not approve a particular device or piece of equipment, but the method you describe would meet the requirements of the standard.” And never forget that – no matter what the manufacturer’s rep says – you, as the employer, are ultimately responsible for how you comply with OSHA’s expectation. As I said, work with your vendors, but do your homework and educate yourself about the requirements. We aren’t just complying with standards – we’re protecting our employees and co-workers.

Common Misconceptions About Harnesses
I have often heard that you can’t arrest at the waist or chest. That is correct if you are truly arresting, which usually means the act of interrupting a fall from height by a personal fall arrest system attached to an anchorage limited to a distance of 6 feet. If you fall 6 feet, you must limit the fall arrest’s load, and the fall arrest’s load must be distributed across the body. That is why we use a full-body harness.

Continue reading
Rate this blog entry:
3707 Hits
0 Comments
Danny Raines, CUSP

Voice of Experience: OSHA Record-Keeping Requirements

OSHA record-keeping has long been an administrative challenge to businesses required to keep OSHA logs. In this installment of “Voice of Experience,” I’ll cover some changes that have occurred over the years as well as some essentials that all employers and employees must understand in order to maintain compliance with OSHA requirements.

When the change from the OSHA 200 log to electronic record-keeping was made in 2002, it was a relief to many. At that time, all issues involving first aid were resolved; a list of first aid treatments was identified and took any doubt out of the requirement to report medical attention beyond first aid.

The addition of a hearing loss column to OSHA’s Form 300, “Log of Work-Related Injuries and Illnesses,” in 2004 helped identify hearing loss for those businesses covered by OSHA 29 CFR 1910.95(c), “Hearing conservation program.” Previously, hearing loss often was considered an illness rather than an injury.

Today, the number of logs a business must maintain is determined by the number of premises operated by the business. A log is required to be maintained for each location with an address unless there are multiple facilities at the same address. Centralized electronic record-keeping is acceptable if the records can be provided within four business hours upon request by an OSHA officer. The request must be made in the location of the corporate office where records are kept, even when it is in a different time zone.

An injury must be reported to a record-keeper for logging within a maximum of seven days from the time of the accident; this requirement has not changed. The supporting forms required to document the log entry also remain the same. OSHA’s Form 301, “Injury and Illness Incident Report,” or an acceptable state workers’ compensation form must accompany any orders written by a licensed health care provider (LHCP). All documentation must be retained and kept available in case of an audit. The number of days away or restricted days must be recorded and may be capped at 180 days. The current year and the last five years of OSHA 300 logs must be available for audit or inspection upon request by approved officials. OSHA’s Form 300A, “Summary of Work-Related Injuries and Illnesses,” must be posted no later than February 1 of the year following the year covered by the form, and it must remain posted in the establishment for 90 days in conspicuous locations that are frequented by employees.

Continue reading
Rate this blog entry:
998 Hits
0 Comments
Jim Vaughn, CUSP

April 2017 Q&A

Q: Our plant safety committee has a longtime rule requiring electrical hazard safety shoes for our electricians. We were recently told by an auditor that we have to pay for those shoes if we require employees to wear them. We found the OSHA rule requiring payment, but now we wonder if we are really required to use the shoes. Can you help us figure it out?

A: Sure, we can help. But first, please note that Incident Prevention and the consultants who have reviewed this Q&A are not criticizing a rule or recommending a rule change for any employer. What we do in these pages is explain background, intent and compliance issues for workers and employers in the workplace.

You mentioned a longtime rule that probably dates back to the early OSHA rules that required electrical hazard boots for electricians. We can’t remember exactly when, but there was a letter to administrators in the early 1990s and subsequent rule-making that changed the language on the use of electrical hazard shoes. Your auditor is right; if you require employees to wear them, you are required to pay for them because unlike regular safety shoes, the electrical hazard criterion makes the safety shoe a specialty shoe. Specialty shoes must be provided at no cost to the employee (see www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=INTERPRETATIONS&p_id=29825).

Now let’s address the question, are the shoes required? Employers are required to perform a workplace hazard assessment and then use engineering or procedural controls to eliminate hazards. If a hazard cannot be eliminated by procedures or engineering, PPE is required. OSHA agrees throughout current literature that electrical hazard shoes are to be employed as part of a system of protection based on the hierarchy of controls. If you read the rule closely, you will see that the language is very particular. OSHA 29 CFR 1910.136(a) – edited here for clarity and space – states that the “employer shall ensure that each affected employee uses protective footwear … when the use of protective footwear will protect the affected employee from an electrical hazard, such as … electric-shock hazard, that remains after the employer takes other necessary protective measures.” Those other measures are the hierarchy first, PPE last.

Continue reading
Rate this blog entry:
1003 Hits
0 Comments
David McPeak, CUSP, CET, CHST, CSP, CSSM

Frontline Fundamentals: Risk Tolerance

A fundamental premise of working safely is that hazards must be identified and then controlled. Too many incidents occur because hazards are not identified, or worse, they are identified but ignored or tolerated.

One of my favorite ways to introduce the concept of risk tolerance is to ask a Frontline class this simple question: “What are some things you might hear someone say before something really bad happens?” It always amazes me – and scares me – how open participants are when I ask this question. Typical responses I have heard include:
• “We’ve done this a thousand times and no one has ever gotten hurt.”
• “We’ve always done it this way.”
• “This is going to hurt.”
• “If this works, we’ll be heroes.”
• “I think it will hold.”
• “I can survive anything for two minutes.”
• “What’s the worst that could happen?”
• “Here goes nothing.”

That list could go on for a long time, and it gives us a lot of insight into how we think about hazards and risk. In fact, I want to be sure to mention one incredibly memorable response not listed above that led to some great discussion about risk tolerance: “Hold my beer and watch this.”

Take a moment to remember if you have ever made that statement or heard someone else make it. What followed? I have heard stories involving “testing” an underground dog fence, in which someone held the shock collar in his hand and ran through the fence; jumping off a roof into a swimming pool; attempting to bench-press 400 pounds; boxing a kangaroo; and a myriad of other superhuman feats fueled by alcohol. Oddly enough, sober people do not think it is cool or that it will impress someone if they, for instance, eat a spoonful of cinnamon.

Continue reading
Rate this blog entry:
1188 Hits
0 Comments
Mark J. Steinhofer, CHST, CSP, CUSP

The Silent Secret About Successful Safety Communication

The Silent Secret About Successful Safety Communication

It’s a chilly morning, and the crew is eager to make progress on the substation upgrade before tomorrow’s snow. A shiny pickup truck pulls up to the job site, the driver’s door opens and out walks a good-looking guy in neatly pressed khakis, a white button-down shirt and highly polished lace-up shoes. He stops a couple yards away from the crew, looks at everyone, breaks into a cheesy smile and makes a joke about his golf game.

Nobody laughs or even snickers. After an awkward pause, “Joe Office” tells the crew that fall protection is the day’s safety discussion topic. He points to one of the crew members and mentions that he saw him working without a harness yesterday, and that isn’t acceptable. He drones through the rest of the lesson and asks if anyone has any questions. There’s no response from the crew, so Joe Office grins again and tells everyone to stay safe as they shuffle off to the day’s tasks.

Words Mean Little
What Joe Office doesn’t realize is that nobody paid attention to anything he said. Oh, they heard him just fine, but Joe lost most of the crew members before he opened his mouth, and the rest tuned out within the first 30 seconds of hearing him speak. They pretended to listen while they thought about other things.

It’s true that Joe Office knows a lot about safety. Unfortunately, he has no clue what his body language projects and can’t read the body language of the workers with whom he’s communicating. As a result, in this scenario he wasted everyone’s time and had zero effect on the crew’s well-being.

The fact is that humans do far more listening with our eyes than we do with our ears. According to Mehrabian and Wiener, and Mehrabian and Ferris, when a verbal message is delivered, a typical human being only receives about 7 percent of the message via the words that are spoken. Thirty-eight percent of how a person receives a message is due to the way those words are delivered. And a full 55 percent of the message is conveyed through the speaker’s body language.

In other words, when a safety professional speaks to a group of workers, the nonverbal components of his or her message have a far greater impact on listeners than what’s actually being said. The professional’s physical appearance, body language, tone and pace of voice determine how carefully the workers will listen and how much they’ll retain.

Continue reading
Rate this blog entry:
5386 Hits
0 Comments

KNOWLEDGE, INSIGHT & STRATEGY FOR UTILITY SAFETY & OPS PROFESSIONALS

Incident Prevention is produced by Utility Business Media, Inc.

360 Memorial Drive, Suite 10, Crystal Lake, IL 60014 | 815.459.1796 | This email address is being protected from spambots. You need JavaScript enabled to view it.
© 2017 Incident Prevention. All Rights Reserved.