Skip to main content

LOOKING FOR SOMETHING?

Induction Current V Resistance Web

Train the Trainer 101: Practical Personal Protective Grounding

Written by Jim Vaughn, CUSP on . Posted in , , .

In the last 10 years I have consulted on dozens of induction incidents, eight of which resulted in fatalities. There were commonalities in each one. Just about every Incident Prevention reader will agree that one of the topics that receives the most attention across the power industry – in writing, training and conversation – is personal protective grounding (PPG). Not a week goes by that I don’t email or talk to someone about PPG and, in particular, about dealing with induction.

At iP we discuss and share information as well as news about incidents involving induction, and yes, they do occur at an alarming rate. I can’t point to any empirical evidence, but my colleagues and I think we, as an industry, are the reason for the confusion over PPG issues. We have been slow to evolve from grounding for the purpose of stabilizing electrical systems and protecting equipment, to grounding for the protection of workers. Even the language of the OSHA standard, to some, seems vague, contradictory or too technical. The ANSI standards establish sound procedures for protective arrangements, but they are not training resources for craft workers. Now, as infrastructure loads and system voltages continue to increase, there are corresponding hazards that were not even discussed just a generation ago. Those hazards are resulting in incidents and, worse, preventable incidents that risk the lives of power-line workers.

The Six Principles
My colleagues and I have consulted with companies that have training and 300-page grounding procedures manuals that didn’t prevent induction fatalities. The common thread among the fatalities was that the crews involved simply didn’t see the hazards, usually because they didn’t understand the simple principles involved that might have prevented them. I believe that if qualified workers understand the following six principles about current flow, including information regarding grounded systems, they can make the appropriate decisions about how to protect themselves in the hundreds of scenarios they may face over their careers.

Principle 1
Current flows in grounded systems the same way it flows in ungrounded circuits.

Principle 2
Current in parallel systems takes every available path inversely proportional to the resistance of the path. This means interconnected systems will have current in every path, and low-resistance paths will have more current flowing than high-resistance paths.

Principle 3
If you can’t quantify it, you must assume it is deadly and protect yourself accordingly. This means you can’t make assumptions regarding the level of induction. If you can’t calculate or measure for it, you must assume it will be there and take the necessary precautions, like bonding to create areas of equal potential.

Principle 4
It takes about 50 volts to break the electrical resistance of your skin. The voltage required to break the electrical resistance of your body increases when you don nonelectrical barriers like shoes or gloves. If you use rubber gloves, the required voltage increases substantially.

Principle 5
This principle addresses the current it takes to harm you. Charles Dalziel’s empirical data from his experiments in the 1950s and 1960s showed us that a 155-pound lineworker could withstand 91 milliamps for 3 seconds before ventricular fibrillation (see www.hubbellpowersystems.com/literature/encyclopedia-grounding/pdfs/07-0801-02.pdf). For that reason, it is widely accepted and used here that 50 milliamps of current is the threshold of exposure that rises to the level of a hazard to workers. It should be noted here that OSHA, in a note to 29 CFR 1926.964(b)(4), uses a 1-mA current (threshold of perception), assuming that a perceived shock (i.e., current higher than 1 mA) could cause an involuntary reaction resulting in a nonelectrical injury.

Principle 6
This principle targets the difference between tripping grounds and equipotential grounds. Grounds installed to trip a de-energized system during an inadvertent energizing will not protect a worker who is not at equal potential with the system path. Grounds installed to trip the circuit, or tripping grounds, may also be used to protect the worker. However, unless they are arranged or installed to create a zone of equipotential, they will not protect the employee from injury either from inadvertent energizing or induction.

These six principles are not codified or written in any training manual. These are things I have learned over the years as important to recognizing and mitigating the risk of induction-related incidents and injuries. But the most frequent issue relates to the first two principles. In PPG, more is not always better. The problem with grounding is that there are lots of interconnections, and then we add them either purposely or by virtue of bonding.

A Test Case
Let’s review an example based on a transmission construction crew’s misunderstanding about resistances in a circuit, which, by the way, is very similar to three of the eight fatal incidents I referred to at the beginning of this article. In this particular case, crews were clipping three-bundle 1590 on a 500-kV new construction on steel mono-poles. The crew correctly knew to bond the basket to the bundle before contacting the bundle to rig for lifting. They used a chain hoist and steel sling rigged from the tower arm to lift the bundle. The bundle was connected to the hoist with nylon slings. Their crane-mounted man basket was grounded at the tower base. The crew’s mistake was believing that bonding the basket to the bundle would put the wire at the same potential as the hoist and tower arm through the connection to the basket and crane. This assumption was incorrect but not uncommon. Once the crew learned the PPG principles, they understood the trap they were building for themselves.

Applying Principles 1 and 2
Current flows in a grounded circuit just like an ungrounded one, and current flows in every available path inversely proportional to the resistance of the path. The source in the example I just described was induction from a 500-kV line parallel to the crew’s build. There was an unknown level of current on the bundle, but voltage was not detectable. This was due to grounded bundle blocks that remained on the new construction and the grounds placed at each end of the two-mile section the crew was clipping. When the basket is bonded to the wire, induction current flows from the conductor, through the boom and into the tower and earth through the tower ground. Up on the wire there is an electrical gap across the nonconductive nylon slings used to rig the conductor to the steel hoist connected to the tower. If a man in contact with the bundle grabs the hoist, he is going to close that gap. The tower has very low resistance compared to the basket and crane. The tower will have more current flowing through that lower resistance than the crane. In other words, the two paths to ground – one through the crane, one through the tower – are not at equal potential. A man in that gap is at risk. The only way to put the two paths at equal potential, or very near equal potential, is to bond the conductor to the tower.

Applying Principle 3
If you can’t quantify it, you must assume it is deadly and protect yourself accordingly. Many lineworkers may have worked in a scenario similar to the aforementioned example and would say they’ve done it that way hundreds of times and never felt a thing. And that may be true, especially if they were working in leather gloves. In their case, it’s possible that the voltage across the open gap between the wire and hoist was only 25 volts, but suppose it was 1,800 volts. What if it was 25 volts that morning because the nearby line only had 80 amps on it, and then they switched it at 10 a.m. and it had 300 amps on it a split second later? You can’t quantify the risk and assure there is none, so you must assume it is deadly and bond across the gap.

Applying Principles 4 and 5
It takes about 50 volts to break the electrical resistance of your skin, and more than 50 milliamps of current is hazardous to workers. It is true that when the basket was bonded to the tower, the tower had current flowing on it at the ground connection. We already know about the resistances and current flow. The tower grounds are very low-resistance, and the crane ground is connected to the terminal stud for the tower ground. The majority of the current on the crane goes into the ground. The tower voltage at this point is measurable between the terminal ground and remote earth. Remote earth is some point on the ground away from the grounding electrode conductor from tower to ground rods. That voltage is developed across the resistance of the earth. There is another resistance where voltage can now be measured. That is the gap between the wire and the tower. That gap could easily have 20 volts or 1,500 volts or more depending on the current flowing in that grounded bundle. And if the bundle block on that structure is grounded, there is another gap that will appear as soon as the conductors are lifted from the bundle block. By the way, I know of two instances in which the induction current was so high that rope slings – and on another occasion, nylon slings – caught fire.

Applying Principle 6
Although it happens, we rarely hear of someone closing on a grounded line. In construction, the more likely scenario is losing your pulling sag or rigging, resulting in your new conductors falling into an energized line. If that happens, your grounded travelers are going to do their job, provided the lineworker who installed them brushed the clamps and connections. Grounded travelers often get overlooked. Several sets of grounded travelers provide multiple paths to earth, helping to manage fault current and reducing current rise at the work location. But the only grounds that will protect employees are those rigged to bridge or jumper around them, preventing voltage rise across their bodies where they are between potentials like travelers and tower, tuggers and earth or conductors and reel trailers.

Employers struggle to identify risks and teach procedures. There isn’t room in this article to look at all of the grounding scenarios out there, and you may find some additional basic principles not discussed here. Send us your comments and training ideas. We hope that providing understanding and principles will give your lineworkers more tools to identify and mitigate induction risks.

Induction Current V Resistance Web

About the Author: After 25 years as a transmission-distribution lineman and foreman, Jim Vaughn has devoted the last 17 years to safety and training. A noted author, trainer and lecturer, he is director of safety for Atkinson Power. He can be reached at jim.vaughn@atkn.com.

Editor’s Note: “Train the Trainer 101” is a regular feature designed to assist trainers by making complex technical issues deliverable in a nontechnical format. If you have comments about this article or a topic idea for a future issue, please contact Kate Wade at kate@incident-prevention.com.

IP ARTICLE VAULT 2004 - 2015

Human Performance Tools: Important or Critical?

2014 USOLN Safety Award Winners Announced

Arc Flash and the Benefits of Wearing PPE

Closing the Safety Gap

Chainsaw Safety, Planning and Precision Felling Techniques

Train the Trainer 101: Substation Entry Policies

Voice of Experience: How Does the Employer Ensure and Demonstrate?

December 2014 Q&A

December 2014 Management Toolbox

Lessons Learned, Successful Implementation of Behavioral Safety Coaching

The Pain Game: Preventing MSDs

Eliminating Excuses

Training for the New Century

Fall Protection by the Numbers

Injury Free Change

What It Takes to be a Safety and Compliance Leader

Why Single-Point Grounding Works

The Burning Question

Notes From the Underground

Leadership Influencing the Culture

Ergonomics: Preventing Injury

Taking Safety to the Next Level

4 Rules to Live By

Frostbite

A Friend in Need at Indiana Rural Electric Coops

Cleaning Rubber Goods for Safety

Lowering the Threshold

CAVE-IN! Increasing Job Site Safety & Reducing Costs

Keeping the ‘Fighter Pilots’ of Your Company Safe

Safety Comes First at SM Electric

Dramatic Results

Focusing on Safety at Comcast

When is a Lineman a Lineman?

Making Sure Everyone Goes Home Safe at Southern California Edison

Stay Alert! Work Safe!

Everyone Benefits at Charter Communications

Dissecting an OSHA Inspection

Top Five PPE Mistakes

Ultimate Protection

Learning Curve

Total Success at Dominion

NESC-2007 Update

Making Safe Choices

Tips for Improving Incident Investigation Interviews – Part 1: Preparation

The Key to Safety at KCP&L

Digging Out – The Interagency Snow Rescue Task Force

LockOut TagOut

Tips for Improving Incident Investigation Interviews- Part 2: Contact Time

Dreams Can Become Reality: SDG&E Flex Center

Bridging Communication Gaps

Equipotential Grounding at AEP

Training Development

Focusing on a Safety Culture at Consumers Energy

Substations: Eliminating the Dangers Within

Ensuring Safety at Grand Bahama Power

Perfect Storm – The Case for AED’s

Embracing Change: Think Human Performance

NESC 2007 FLAME RESISTANT CLOTHING

Managing Safety Rule Violations

Passion for Safety

How to Bulletproof Your Training

Tower Rescue Pre-planning Pays Off

Managing Safety

Effective Fall Protection for Utility Workers

Safety Information Superhighway

Inspection of Wooden Poles

Free Climbing vs. Safer Climbing

Safety Culture Success

Inspecting, Cleaning and Storing Live-Line Tools

Arc Flash – Are You in Compliance?

Human Performance

Training Second Point of Contact

Preventing Underground Damage

Keeping Things Safe in the Field and the Office

Winter Safety Vehicle Checklist

Strategies for Safety in the Wind Industry

What’s in a Number?

How to Choose and Use Ergonomic Hand Tools

Meeting the Challenge

Machine Safety

What You Need to Know About Substations

Moving from Operations into Safety or Training

Distribution Dispatcher or System Operator?

High Visibility and Arc Ratings for Flame Resistance

Stuck in the Mud

Aerial Rescue

Going With the Wind

Incident Analysis

Hidden Traps of Generator Use and Backfeed

Making the Right Choice

Soil Resistivity Testing & Grounding System Design: Part I of II

Succession Syndrome

Making Safety a Core Value

Floodwater Hazards and Precautions

Know the Signs and Symptoms of Heat-Related Illnesses

Huge Steps

Seamless and Compliant

Soil Resistivity Testing & Grounding System Design: Part II of II

Aerial Lifts

How Good Are Your Tailgates?

Root Cause Analysis

Maturity Matters

What Do We Do About Arc Hazard?

NESC-2012-Part 4: Summary of Change Proposals

A FULL Commitment

Arc Suppression Blanket Installation

What Does NFPA 70E Mean To You?

How Safe Are Your Ground Grids?

Introducing a New Certification Program for Utility Safety Professionals

Confused About Arc Flash Compliance?

Analyzing Safety and Hazards on the Job

Error-Free Performance

People Focused Safety

No Substitute

Error-Free Performance: Part II

Heard It Through the Grapevine

Best Practices

Line of Fire

Is Your Company Ready for the Next Disaster?

Preventing Employee Exposure to Pesticides

Compressed Gas Cylinder Safety

LOTO vs. Switching and Tagging

Are You on Cruise Control?

Solid Footing

Hand Protection

Crane & Derrick Compliance

Mind Control: Distractions, Stress and Your Ability to Work Safely

Rubber Insulating Line Hose

Procedure for Reducing Injuries

Huskie Tools Opens New Fiberglass Restoration Division

A92.2: The 2009 Standard

Vehicle Operation Winter Readiness

ATV Safety Begins with Proper Training

Innovate or Follow: The Argument Against A Best Practice

Northeast Utilities Takes Safety Off-Road

High-Pressure Hydraulic Injection Injuries

100 Percent Fall Protection: A Joint Union-Management Effort

Crew Foreman Needed: Who Do We Pick?

Behavior Safety: A Safety Program’s Missing Link

Challenges & Successes

Drop Zone Management: Expanding Our View of Line of Fire

Taking Stock of Your Fall Protection Compliance

Live-Line Tool Use and Care

Employee Training: How Hard Can It Be?

Supervisory Skills for Crew Leaders

Equipment: Back to Basics

A Second Look at Safety Glasses

Competition for a Cause

Human Behavior and Communication Skills for Crew Leaders

Cultivating a Mature Workforce

What’s Your Seat Belt IQ?

Substation Safety

No-Voltage Testing

Five PPE Safety Challenges

Safety Circuitry: The Power in the Brain

Arc Flash Exposure Revisited: NESC 2012 Part 4 Update

T&D Best Practices for Crew Leaders

CUSP Basics: Introduction to Human Performance Principles

Felling of Trees Near Power Lines

Working in Winter

Back to the Basics: PPE 101

Hearing Conservation: An Interesting Challenge

T&D Safety Management for Crew Leaders

Basic Qualifications of Employees

FR Layering Techniques

Safety Rules and Work Practices: Why Don’t They Match Up?

Effective Customer Relationships for Crew Leaders

The Value of Safety Certification

Safety Leadership in a Written Pre-Job Briefing

Communication: The Key to Great Safety

Safe Use of Portable Electric Tools, Cords and Generators

Keys to Effective Fall Protection

Integrity and Respect: Two of Our Most Important Tools

The Intersect: A Practical Guide to Work-Site Hazard Analysis

Strategic Safety Partners

Behavior Safety Training for Safety Committee Members

Combating Overuse and Overexertion Injuries

Safe Digging – Get the 411 on 811

Apprenticeship Training

How S.A.F.E.T.Y. Brought Bluebonnet Through the Fires

Formal vs. On-the-Job Training

That’s What I Meant to Say: Safety Leadership in Communication

The Value of Personal Protective Equipment

Safety and Human Performance: You Can’t Have One Without the Other

Oh, No! Changes in the Workplace

Performance Improvement: Barriers to Events

Train the Trainer 101: Ferroresonance Explained

Voice of Experience: Safety Excellence Equals Operational Excellence

A Mirror: Your Most Important PPE

Care of Portable Ladders

Voice of Experience: FMCSR Compliance: Driver Qualification Files

Train the Trainer 101: Enclosed Space Rescue

Keys to Evaluating and Comparing Arc-Rated and Flame-Resistant Fabrics

Raising the Bar, Lowering the EMR

How Six Sigma Can Improve Your Safety Performance

Detecting Shock Hazards at Transmission Line Work Sites

Care and Maintenance of Climbers

Voice of Experience: Are You Ready for the Big Storm?

Train the Trainer 101: Working from Crane-Mounted Baskets

Learning Leadership: The Leadership Paradigm Shift

Are You Prepared for the Next Generation of Lineworkers?

Implementing a Zero Injury Program

Public Safety and Our First Responders

Managing Cold Stress

Live-Line Work on the Jersey Shore

Soil Classification and Excavation Safety

Voice of Experience: The Definition of Personal Protective Equipment

Learning Leadership: Leadership Skill Set 1: Self-Awareness

Evaluating Crew Supervisors

Train the Trainer 101: Arc Hazard Protection

NESC and ANSI Z535 Safety Sign Standards for Electric Utility Power Plants and Substations

Working Safely with Chain Saws

The Globally Harmonized System for Classifying and Labeling Chemicals

Voice of Experience: The Cost of Business

Train the Trainer 101: Understanding Grounding for the Protection of All Employees

Learning Leadership: Leadership Skill Set 2: Self-Regulation

Occupational Dog Bite Prevention & Safety

Safety Awareness for Substations

Bighorn Sheep vs. Lineworkers: What’s the Difference?

OSHA Job Briefing Basics

Voice of Experience: Training for the Qualified Employee

Train the Trainer 101: ASTM F855 Grounding Equipment Specs Made Simple

Foundation Drilling Safety: The Aldridge Electric Story of Success

The Authority to Stop Work

Starting From the Ground Up

Understanding Step and Touch Potential

Multitasking vs. Switch-Tasking: What’s the Difference?

Voice of Experience: Incidents and the Failure to Control Work

Train the Trainer 101: Live-Line Tool Maintenance Program

Passing the CUSP Exam

Learning Leadership: Leadership Skill Set 4: Social Awareness

Ergonomics for Lineworkers

Are Your Temporary Protective Grounds Really Protecting You?

Voice of Experience: Working On or Near Exposed Energized Parts

Train the Trainer 101: Why You Need More than 1910 and 1926

Transitioning to FR Clothing

Leadership Skill Set 5: Social Persuasion

Safety Management During Change

Spice It Up!

The Singing Lineman

Emergency Action Plans for Remote Locations

Trenching and Excavations: Considerations for the Competent Person

Traffic Safety for Lineworkers

Using Best Practices to Drive Safety Culture

Voice of Experience: The Globally Harmonized System is Here

Train the Trainer 101: Grounding Trucks and Mobile Equipment

The Power of an Effective Field Observation Program

What OSHA’s Proposed Silica Rule Means to You

2013 USOLN Safety Award Winners Announced

Learning Leadership: Personal Protective Emotional Armor: Part 1

Electrical Capacitors in AC Circuits

Improving Safety Through Communication

The Benefits of The CUSP Credential

Voice of Experience: Why Did I Do That?

Train the Trainer 101: Practical Elements for Developing a Safety Culture

Learning Leadership: Personal Protective Emotional Armor: Part 2

Fact-Finding Techniques for Incident Investigations

Electrical Safety for Utility Generation Operations Personnel: A Practical Approach

Addressing Comfort and Contamination in Arc-Rated Clothing

Are You Your Brother’s Keeper?

2013 iP Safety Awards

A Key to Safety Performance Improvement

Salt River Project: Devoted to Safety Excellence

Train the Trainer 101: Safety Incentive Programs

Voice of Experience: OSHA 300 Record-Keeping Rules

Understanding and Influencing the ‘Bulletproof’ Employee

Sustaining Safety Successes

Accident Analysis Using the Multi-Employer Citation Policy

PPE: Much More Than Basic or General Protection

Voice of Experience: Understanding Enclosed and Confined Spaces

Train the Trainer 101: OSHA Forklift Certification Requirements

June 2014 Q&A

Injury Prevention Through Leadership, Employee Engagement and Analytics

NFPA 70E Arc Flash Protection for Nonexempt Industry Workers

The Final Rule

Distributed Generation Safety for Lineworkers

The Perils of Distracted Driving

August 2014 Q&A

Voice of Experience: OSHA Eye and Face Protection Standards

Train the Trainer 101: Fall Protection and the New Rule

Responding to Pole Fires

SRP Rope Access Program Addresses Towers of Power

Elements of an Effective Safety Committee

Mitigating the Risks of Aerial Patrols

Job Briefing for One

Culture Eats Programs for Breakfast

October 2014 Q&A

Voice of Experience: Flame-Resistant Apparel is Now PPE

Train the Trainer 101: Stringing in Energized Environments

The Risks and Rules of Chainsaw Operation

Behavior-Based Safety: What’s the Verdict?

Photovoltaic Solar Safety Management for Utilities

Drones and the Future of Tower Safety

Storytelling as a Management Tool

Safety and Common Sense

Snubbing to Steel Lattice Structures: Lessons Learned

February 2015 Management Toolbox

February 2015 Q&A

Voice of Experience: The Importance of Job Briefings

Train the Trainer 101: Addressing Anchorages

Recent PPE Changes and 2015 Trends

Growing a Human Performance Culture

Measuring, Planning and Cutting Methods for Chainsaw Operators

The Importance of Matching Evidence Marks in Accident Investigations

Safe By a Nose

Overhead Utility Hazards: Look Up and Live

April 2015 Management Toolbox

April 2015 Q&A

Voice of Experience: OSHA Updates to Arc-Rated FR Clothing Requirements

Train the Trainer 101: The OSHA-EEI Subpart V Settlement

The Safety Side Effect: How Good Supervisors Coincidentally Improve Safety

Facing Unique Challenges

The Roller-Coaster Life Cycle of IEEE 1307

The Power of Human Intuition

Thirty Years of Personal Perspective

The Most Important Tool on the Job Site

June 2015 Management Toolbox

June 2015 Q&A

Voice of Experience: Fundamentals of Underground Padmount Transformers

Train the Trainer 101: Back to Basics: ‘Gentlemen, This is a Football’

Arrive Alive

How to Navigate the FR Clothing Marketplace

Making the Switch

Understanding OSHA Electric Power Training Requirements

Distribution Switching Safety

Human Performance and a Rat Trap

August 2015 Management Toolbox

August 2015 Q&A

Voice of Experience: Power Generation Safety and the OSHA Update

Stringing Best Practices: Mesh Grips vs. Preforms

Understanding Safety Culture Through Perception Surveys

RF Safety for Utility Workers

2015 USOLN Safety Award Winners Announced

Train the Trainer 101: Practical Underground Safety: Handling Neutrals and Rescue

Voice of Experience: PPE Regulatory and Consensus Standard Requirements

December 2015 Q&A

December 2015 Management Toolbox

The 911 Dilemma

Spotters: A Critical Element of Site Safety

Coping With Industry Changes

The Safety Coaching Observation Process

Fundamentals of Substation Rescue Plans

Recruiting and Training the Next Generation

Shifting Your Organizational Safety Culture

Investigating Industrial Hygiene at Salt River Project

Train the Trainer 101: Practical MAD and Arc Flash Protection

Voice of Experience: Clearing Up Confusion About 1910.269

October 2015 Q&A

October 2015 Management Toolbox

N95 Filtering Face Pieces: Where Does Your Organization Stand?

Stepping Up Steel Safety Education

Rigging Fundamentals for Utilities

Arc Flash Mitigating Technologies and the OSHA Final Rule

Train the Trainer 101: Practical Personal Protective Grounding

OSHA and the Host-Contractor Relationship