Skip to main content

LOOKING FOR SOMETHING?

Train the Trainer 101: Stringing in Energized Environments

Written by Jim Vaughn, CUSP on . Posted in , , .

Stringing wire in any environment can quickly go wrong. Dropped conductors can wreak havoc if precautions are not taken. In an energized environment, the result of losing control or dropping conductors has a greatly magnified risk.

Guard structures are the first type of protection conventionally used to prevent contact with energized lines. Ideally, guard structures are positioned so that whether it’s the unexpected loss of stringing tension or something as major as a dropped conductor, the conductor being pulled will not make contact with the energized lines. There are other requirements, too, one being non-automatic setting of breakers for the lines being crossed if it is not possible to de-energize and ground them.

No matter how good your guard structures are, if you are pulling across or parallel to energized lines, you must ground the conductors being pulled. The revised language of 29 CFR 1910.269(q)(2), “Installing and removing overhead lines,” has added requirements focusing on induction as well as contact with other energized lines during pulling. Induction is voltage or current that can build up on the conductors being pulled from sources other than direct contact with an energized line. The rules of 1910.269(q) are mirrored in 1926.964(b) of the construction standard. To save space and time, we will refer only to the 1910.269 standard in this article.

Paragraph 1910.269(q) has always been the guide for stringing and worker protection and formally included specific instruction for placing grounds. The reader is now referred to paragraph 1910.269(p)(4) for grounding for the protection of personnel from inadvertent electrical contact. Paragraph 1910.269(p)(4) has always contained the requirements for protecting workers from injury when booms or equipment may become energized, but the language in the standard has been revised. Conductor being strung in an energized environment is now included, and the protective expectations provided by grounding are the same for conductor during stringing as for boom trucks, cranes and derricks that may become energized.

Placement of Grounds
The expectation of the rule has always been mat, ground and barricade the equipment, traveling ground at the tensioner, grounds at the puller, grounded travelers at each break-over, traveling ground at each crossing and no more than two miles apart.

In 1910.269(q)(2), OSHA requirements for grounding the pulled conductors do not differentiate between transmission and distribution; however, grounded travelers are an issue in distribution wire pulling. While manufacturers have designed studs for attaching a ground to a typical distribution traveler that perform well under electrical tests, they do not have travelers designed for grounding the moving conductor like they do for transmission pulling. The only device designed as a ground for distribution-sized conductors is the running ground installed at the wire tensioner. The running ground is not practicable for use out on the line as a ground for pulling because you cannot pass a grip or swivel through it.

The language in the OSHA standards prior to this year’s revisions had specific requirements for placement of grounds on conductors during stringing. OSHA standards have always required certain protections utilizing grounds to protect workers from the risk of electrical injury should conductors sag into energized lines. The rules still require the employer to protect the workers, but they have removed the specific requirements such as where traveling grounds must be placed. Even though OSHA has removed the specific requirements about where to place grounds when stringing in an energized environment, the practices remain the same, specified by consensus standards. The applicable consensus standard, “IEEE 524: IEEE Guide to the Installation of Overhead Transmission Line Conductors,” contains procedural language, including location and placement of grounds in 5.5.3.2. Article 7 of “IEEE 1048: IEEE Guide for Protective Grounding of Power Lines,” deals with transmission and distribution stringing. Article 7 refers the reader to IEEE 524.

Grounding in stringing has two functions: to cause immediate operation of circuit protective devices and to equalize potentials for the protection of personnel. The more grounds you place along the line, the better path to ground you create. Grounding, however, does not protect all personnel. Planners must be aware that grounding to a structure electrically couples current to them in a fault as well as current from induction. If the conductor being pulled is energized, the structure and the earth around the structure will be energized until the circuit protective device operates to clear the voltage from the line. Grounded travelers out on the line shunt those currents to earth along every available path to ground. Current flowing in those paths is inversely proportional to the resistance of the circuit. This means, of course, that every ohm of resistance built into the grounding connections limits the current that can flow to ground. The net result is that the circuit protections will not operate as quickly. It also means that current will flow in higher levels to other places, such as back to the tensioner where your people are. The message is that those remote grounds have a very important role to play, and the integrity of the connections matters.

Grounding at Equipment Setups
In most cases, the tensioner is the first piece of equipment that will be affected by energizing the conductor being pulled. A worker on the tensioner body is at risk from the conductor being energized, both from arching across the tensioner wheels and at the reels. Here is where the often-neglected traveling ground plays a very important role. We repeatedly see traveling grounds tied off to a tensioner but grounded to a rod. This misses an important role for the traveling ground. If the traveling ground is bonded to the tensioning trailer, and that trailer is bonded to the reel trailer, all of the equipment will be at the same or close to the same potential as the conductor being pulled. This bonding serves to protect operators from potential differences across conductor and trailer.

A very important consideration here are the potential differences between earth and trailers. During pulling, several workers need to be in attendance at pullers, tensioners and reel trailers. If the ground around the equipment is not at potential with equipment, risks are high not only from faults, but also from induction. Individual bonded mats at equipment access points or a large ground mat upon which all the equipment sits protects workers from those risks.

Grounding Travelers
Grounding moving conductors is accomplished using travelers (wire-pulling dollies or sheaves) designed and equipped with attachments to provide a ground on the moving conductor. The design of the ground connection must be sufficient to carry steady-state induced currents as well as operate a circuit protective device if the conductor makes contact with an energized line. The ground is also expected to survive the contact long enough to cause breaker operation.

Induction Risks
In the final rule, OSHA has removed the requirement for grounds no more than two miles apart. OSHA has also removed the requirements for grounds at the first structure at each end of the pull and at the nearest structure at either side where conductors being pulled cross energized conductors.

There was always an issue with two miles being considered a rule because, as performance language, OSHA does not cite procedures, which is what they did in the original rules. The grounding rule was primarily based on the ability to trip a circuit in an inadvertent contact with an energized circuit while pulling, not necessarily the risk of induction. You may be grounding to trip, but if there is a source of induction, installing grounds between phases and static or neutral creates a closed electrical loop or cell for current to flow in. If the cell is not bonded to earth, the current circulates in the cell can be very high. If the cell is grounded to earth, the current in the cell splits inversely proportional to the two paths available, earth and flowing in the low-resistance cell. So either way, the risk is still there. I have personally measured transmission induction on a grounded circuit at more than 160 amps and 1800 volts. I know it can be higher.

A two-mile-long cell can be very dangerous, and someone who just followed the rule could be building a trap. In our transmission business, we use clamp-on amp meters to check for current as a backup means to understand risks. If currents in a grounded circuit are too high, they result in nuisance shocks and can be a lot worse – even deadly if the work location is not bonded. The solution is to split those two-mile-long cells with additional sets of ground to cut the current in half and create opposing flows, reducing risks.

Rule 1910.269(q)(2)(iv) has a particular reference for employers regarding protecting workers from the risk of induction. It states, “Before employees install lines parallel to existing energized lines, the employer shall make a determination of the approximate voltage to be induced in the new lines, or work shall proceed on the assumption that the induced voltage is hazardous. Unless the employer can demonstrate that the lines that employees are installing are not subject to the induction of a hazardous voltage or unless the lines are treated as energized, temporary protective grounds shall be placed at such locations and arranged in such a manner that the employer can demonstrate will prevent exposure of each employee to hazardous differences in electric potential.”

Note the requirement that the employer must demonstrate that employees are protected. This is not about following rules. Employers must understand and determine the risks to employees, and they must train employees to understand the risks and know how to protect themselves.

Now for the citation criteria: OSHA has added a note to 1910.269(q)(2)(iv) establishing a method of measuring risk to workers by citing current flow through a 500-ohm resistor as the threshold level of exposure. The 500 ohms represent the (conservative) resistance of the body, and the 1 milliamp of current in the standard establishes an employer action level for risk to the employee.

Finally, Incident Prevention has had readers ask if the new rule requires an engineering study before pulling to protect employees from the hazard of induction. My opinion is no, that is not required. The rule states that “… the employer shall make a determination of the approximate voltage to be induced in the new lines, or work shall proceed on the assumption that the induced voltage is hazardous.”

If you assume induction is present and take the appropriate precautions, you have met the requirements of the rule. The new language is to put teeth and citable violation criteria (the notes) in place. The new rule also includes Appendix C with guidance to employers about grounding, largely as a result of requests by commenters during the hearings on the proposed rule.

About the Author: After 25 years as a transmission-distribution lineman and foreman, Jim Vaughn has devoted the last 16 years to safety and training. A noted author, trainer and lecturer, he is director of safety for Atkinson Power. He can be reached at jim.vaughn@atkn.com.

Editor’s Note: “Train the Trainer 101” is a regular feature designed to assist trainers by making complex technical issues deliverable in a nontechnical format. If you have comments about this article or a topic idea for a future issue, please contact Kate Wade at kate@incident-prevention.com

IP ARTICLE VAULT 2004 - 2015

Human Performance Tools: Important or Critical?

2014 USOLN Safety Award Winners Announced

Arc Flash and the Benefits of Wearing PPE

Closing the Safety Gap

Chainsaw Safety, Planning and Precision Felling Techniques

Train the Trainer 101: Substation Entry Policies

Voice of Experience: How Does the Employer Ensure and Demonstrate?

December 2014 Q&A

December 2014 Management Toolbox

Lessons Learned, Successful Implementation of Behavioral Safety Coaching

The Pain Game: Preventing MSDs

Eliminating Excuses

Training for the New Century

Fall Protection by the Numbers

Injury Free Change

What It Takes to be a Safety and Compliance Leader

Why Single-Point Grounding Works

The Burning Question

Notes From the Underground

Leadership Influencing the Culture

Ergonomics: Preventing Injury

Taking Safety to the Next Level

4 Rules to Live By

Frostbite

A Friend in Need at Indiana Rural Electric Coops

Cleaning Rubber Goods for Safety

Lowering the Threshold

CAVE-IN! Increasing Job Site Safety & Reducing Costs

Keeping the ‘Fighter Pilots’ of Your Company Safe

Safety Comes First at SM Electric

Dramatic Results

Focusing on Safety at Comcast

When is a Lineman a Lineman?

Making Sure Everyone Goes Home Safe at Southern California Edison

Stay Alert! Work Safe!

Everyone Benefits at Charter Communications

Dissecting an OSHA Inspection

Top Five PPE Mistakes

Ultimate Protection

Learning Curve

Total Success at Dominion

NESC-2007 Update

Making Safe Choices

Tips for Improving Incident Investigation Interviews – Part 1: Preparation

The Key to Safety at KCP&L

Digging Out – The Interagency Snow Rescue Task Force

LockOut TagOut

Tips for Improving Incident Investigation Interviews- Part 2: Contact Time

Dreams Can Become Reality: SDG&E Flex Center

Bridging Communication Gaps

Equipotential Grounding at AEP

Training Development

Focusing on a Safety Culture at Consumers Energy

Substations: Eliminating the Dangers Within

Ensuring Safety at Grand Bahama Power

Perfect Storm – The Case for AED’s

Embracing Change: Think Human Performance

NESC 2007 FLAME RESISTANT CLOTHING

Managing Safety Rule Violations

Passion for Safety

How to Bulletproof Your Training

Tower Rescue Pre-planning Pays Off

Managing Safety

Effective Fall Protection for Utility Workers

Safety Information Superhighway

Inspection of Wooden Poles

Free Climbing vs. Safer Climbing

Safety Culture Success

Inspecting, Cleaning and Storing Live-Line Tools

Arc Flash – Are You in Compliance?

Human Performance

Training Second Point of Contact

Preventing Underground Damage

Keeping Things Safe in the Field and the Office

Winter Safety Vehicle Checklist

Strategies for Safety in the Wind Industry

What’s in a Number?

How to Choose and Use Ergonomic Hand Tools

Meeting the Challenge

Machine Safety

What You Need to Know About Substations

Moving from Operations into Safety or Training

Distribution Dispatcher or System Operator?

High Visibility and Arc Ratings for Flame Resistance

Stuck in the Mud

Aerial Rescue

Going With the Wind

Incident Analysis

Hidden Traps of Generator Use and Backfeed

Making the Right Choice

Soil Resistivity Testing & Grounding System Design: Part I of II

Succession Syndrome

Making Safety a Core Value

Floodwater Hazards and Precautions

Know the Signs and Symptoms of Heat-Related Illnesses

Huge Steps

Seamless and Compliant

Soil Resistivity Testing & Grounding System Design: Part II of II

Aerial Lifts

How Good Are Your Tailgates?

Root Cause Analysis

Maturity Matters

What Do We Do About Arc Hazard?

NESC-2012-Part 4: Summary of Change Proposals

A FULL Commitment

Arc Suppression Blanket Installation

What Does NFPA 70E Mean To You?

How Safe Are Your Ground Grids?

Introducing a New Certification Program for Utility Safety Professionals

Confused About Arc Flash Compliance?

Analyzing Safety and Hazards on the Job

Error-Free Performance

People Focused Safety

No Substitute

Error-Free Performance: Part II

Heard It Through the Grapevine

Best Practices

Line of Fire

Is Your Company Ready for the Next Disaster?

Preventing Employee Exposure to Pesticides

Compressed Gas Cylinder Safety

LOTO vs. Switching and Tagging

Are You on Cruise Control?

Solid Footing

Hand Protection

Crane & Derrick Compliance

Mind Control: Distractions, Stress and Your Ability to Work Safely

Rubber Insulating Line Hose

Procedure for Reducing Injuries

Huskie Tools Opens New Fiberglass Restoration Division

A92.2: The 2009 Standard

Vehicle Operation Winter Readiness

ATV Safety Begins with Proper Training

Innovate or Follow: The Argument Against A Best Practice

Northeast Utilities Takes Safety Off-Road

High-Pressure Hydraulic Injection Injuries

100 Percent Fall Protection: A Joint Union-Management Effort

Crew Foreman Needed: Who Do We Pick?

Behavior Safety: A Safety Program’s Missing Link

Challenges & Successes

Drop Zone Management: Expanding Our View of Line of Fire

Taking Stock of Your Fall Protection Compliance

Live-Line Tool Use and Care

Employee Training: How Hard Can It Be?

Supervisory Skills for Crew Leaders

Equipment: Back to Basics

A Second Look at Safety Glasses

Competition for a Cause

Human Behavior and Communication Skills for Crew Leaders

Cultivating a Mature Workforce

What’s Your Seat Belt IQ?

Substation Safety

No-Voltage Testing

Five PPE Safety Challenges

Safety Circuitry: The Power in the Brain

Arc Flash Exposure Revisited: NESC 2012 Part 4 Update

T&D Best Practices for Crew Leaders

CUSP Basics: Introduction to Human Performance Principles

Felling of Trees Near Power Lines

Working in Winter

Back to the Basics: PPE 101

Hearing Conservation: An Interesting Challenge

T&D Safety Management for Crew Leaders

Basic Qualifications of Employees

FR Layering Techniques

Safety Rules and Work Practices: Why Don’t They Match Up?

Effective Customer Relationships for Crew Leaders

The Value of Safety Certification

Safety Leadership in a Written Pre-Job Briefing

Communication: The Key to Great Safety

Safe Use of Portable Electric Tools, Cords and Generators

Keys to Effective Fall Protection

Integrity and Respect: Two of Our Most Important Tools

The Intersect: A Practical Guide to Work-Site Hazard Analysis

Strategic Safety Partners

Behavior Safety Training for Safety Committee Members

Combating Overuse and Overexertion Injuries

Safe Digging – Get the 411 on 811

Apprenticeship Training

How S.A.F.E.T.Y. Brought Bluebonnet Through the Fires

Formal vs. On-the-Job Training

That’s What I Meant to Say: Safety Leadership in Communication

The Value of Personal Protective Equipment

Safety and Human Performance: You Can’t Have One Without the Other

Oh, No! Changes in the Workplace

Performance Improvement: Barriers to Events

Train the Trainer 101: Ferroresonance Explained

Voice of Experience: Safety Excellence Equals Operational Excellence

A Mirror: Your Most Important PPE

Care of Portable Ladders

Voice of Experience: FMCSR Compliance: Driver Qualification Files

Train the Trainer 101: Enclosed Space Rescue

Keys to Evaluating and Comparing Arc-Rated and Flame-Resistant Fabrics

Raising the Bar, Lowering the EMR

How Six Sigma Can Improve Your Safety Performance

Detecting Shock Hazards at Transmission Line Work Sites

Care and Maintenance of Climbers

Voice of Experience: Are You Ready for the Big Storm?

Train the Trainer 101: Working from Crane-Mounted Baskets

Learning Leadership: The Leadership Paradigm Shift

Are You Prepared for the Next Generation of Lineworkers?

Implementing a Zero Injury Program

Public Safety and Our First Responders

Managing Cold Stress

Live-Line Work on the Jersey Shore

Soil Classification and Excavation Safety

Voice of Experience: The Definition of Personal Protective Equipment

Learning Leadership: Leadership Skill Set 1: Self-Awareness

Evaluating Crew Supervisors

Train the Trainer 101: Arc Hazard Protection

NESC and ANSI Z535 Safety Sign Standards for Electric Utility Power Plants and Substations

Working Safely with Chain Saws

The Globally Harmonized System for Classifying and Labeling Chemicals

Voice of Experience: The Cost of Business

Train the Trainer 101: Understanding Grounding for the Protection of All Employees

Learning Leadership: Leadership Skill Set 2: Self-Regulation

Occupational Dog Bite Prevention & Safety

Safety Awareness for Substations

Bighorn Sheep vs. Lineworkers: What’s the Difference?

OSHA Job Briefing Basics

Voice of Experience: Training for the Qualified Employee

Train the Trainer 101: ASTM F855 Grounding Equipment Specs Made Simple

Foundation Drilling Safety: The Aldridge Electric Story of Success

The Authority to Stop Work

Starting From the Ground Up

Understanding Step and Touch Potential

Multitasking vs. Switch-Tasking: What’s the Difference?

Voice of Experience: Incidents and the Failure to Control Work

Train the Trainer 101: Live-Line Tool Maintenance Program

Passing the CUSP Exam

Learning Leadership: Leadership Skill Set 4: Social Awareness

Ergonomics for Lineworkers

Are Your Temporary Protective Grounds Really Protecting You?

Voice of Experience: Working On or Near Exposed Energized Parts

Train the Trainer 101: Why You Need More than 1910 and 1926

Transitioning to FR Clothing

Leadership Skill Set 5: Social Persuasion

Safety Management During Change

Spice It Up!

The Singing Lineman

Emergency Action Plans for Remote Locations

Trenching and Excavations: Considerations for the Competent Person

Traffic Safety for Lineworkers

Using Best Practices to Drive Safety Culture

Voice of Experience: The Globally Harmonized System is Here

Train the Trainer 101: Grounding Trucks and Mobile Equipment

The Power of an Effective Field Observation Program

What OSHA’s Proposed Silica Rule Means to You

2013 USOLN Safety Award Winners Announced

Learning Leadership: Personal Protective Emotional Armor: Part 1

Electrical Capacitors in AC Circuits

Improving Safety Through Communication

The Benefits of The CUSP Credential

Voice of Experience: Why Did I Do That?

Train the Trainer 101: Practical Elements for Developing a Safety Culture

Learning Leadership: Personal Protective Emotional Armor: Part 2

Fact-Finding Techniques for Incident Investigations

Electrical Safety for Utility Generation Operations Personnel: A Practical Approach

Addressing Comfort and Contamination in Arc-Rated Clothing

Are You Your Brother’s Keeper?

2013 iP Safety Awards

A Key to Safety Performance Improvement

Salt River Project: Devoted to Safety Excellence

Train the Trainer 101: Safety Incentive Programs

Voice of Experience: OSHA 300 Record-Keeping Rules

Understanding and Influencing the ‘Bulletproof’ Employee

Sustaining Safety Successes

Accident Analysis Using the Multi-Employer Citation Policy

PPE: Much More Than Basic or General Protection

Voice of Experience: Understanding Enclosed and Confined Spaces

Train the Trainer 101: OSHA Forklift Certification Requirements

June 2014 Q&A

Injury Prevention Through Leadership, Employee Engagement and Analytics

NFPA 70E Arc Flash Protection for Nonexempt Industry Workers

The Final Rule

Distributed Generation Safety for Lineworkers

The Perils of Distracted Driving

August 2014 Q&A

Voice of Experience: OSHA Eye and Face Protection Standards

Train the Trainer 101: Fall Protection and the New Rule

Responding to Pole Fires

SRP Rope Access Program Addresses Towers of Power

Elements of an Effective Safety Committee

Mitigating the Risks of Aerial Patrols

Job Briefing for One

Culture Eats Programs for Breakfast

October 2014 Q&A

Voice of Experience: Flame-Resistant Apparel is Now PPE

Train the Trainer 101: Stringing in Energized Environments

The Risks and Rules of Chainsaw Operation

Behavior-Based Safety: What’s the Verdict?

Photovoltaic Solar Safety Management for Utilities

Drones and the Future of Tower Safety

Storytelling as a Management Tool

Safety and Common Sense

Snubbing to Steel Lattice Structures: Lessons Learned

February 2015 Management Toolbox

February 2015 Q&A

Voice of Experience: The Importance of Job Briefings

Train the Trainer 101: Addressing Anchorages

Recent PPE Changes and 2015 Trends

Growing a Human Performance Culture

Measuring, Planning and Cutting Methods for Chainsaw Operators

The Importance of Matching Evidence Marks in Accident Investigations

Safe By a Nose

Overhead Utility Hazards: Look Up and Live

April 2015 Management Toolbox

April 2015 Q&A

Voice of Experience: OSHA Updates to Arc-Rated FR Clothing Requirements

Train the Trainer 101: The OSHA-EEI Subpart V Settlement

The Safety Side Effect: How Good Supervisors Coincidentally Improve Safety

Facing Unique Challenges

The Roller-Coaster Life Cycle of IEEE 1307

The Power of Human Intuition

Thirty Years of Personal Perspective

The Most Important Tool on the Job Site

June 2015 Management Toolbox

June 2015 Q&A

Voice of Experience: Fundamentals of Underground Padmount Transformers

Train the Trainer 101: Back to Basics: ‘Gentlemen, This is a Football’

Arrive Alive

How to Navigate the FR Clothing Marketplace

Making the Switch

Understanding OSHA Electric Power Training Requirements

Distribution Switching Safety

Human Performance and a Rat Trap

August 2015 Management Toolbox

August 2015 Q&A

Voice of Experience: Power Generation Safety and the OSHA Update

Stringing Best Practices: Mesh Grips vs. Preforms

Understanding Safety Culture Through Perception Surveys

RF Safety for Utility Workers

2015 USOLN Safety Award Winners Announced

Train the Trainer 101: Practical Underground Safety: Handling Neutrals and Rescue

Voice of Experience: PPE Regulatory and Consensus Standard Requirements

December 2015 Q&A

December 2015 Management Toolbox

The 911 Dilemma

Spotters: A Critical Element of Site Safety

Coping With Industry Changes

The Safety Coaching Observation Process

Fundamentals of Substation Rescue Plans

Recruiting and Training the Next Generation

Shifting Your Organizational Safety Culture

Investigating Industrial Hygiene at Salt River Project

Train the Trainer 101: Practical MAD and Arc Flash Protection

Voice of Experience: Clearing Up Confusion About 1910.269

October 2015 Q&A

October 2015 Management Toolbox

N95 Filtering Face Pieces: Where Does Your Organization Stand?

Stepping Up Steel Safety Education

Rigging Fundamentals for Utilities

Arc Flash Mitigating Technologies and the OSHA Final Rule

Train the Trainer 101: Practical Personal Protective Grounding

OSHA and the Host-Contractor Relationship