Skip to main content

LOOKING FOR SOMETHING?

Arc Suppression Blanket Installation

Written by Victor L. Petrovic, Ph.D. on . Posted in .

Use of arc suppression blankets can help reduce arc flash/blast injuries. When properly installed, arc suppression blankets absorb or deflect heat and blast energy emitted from an arc event, reducing the event’s impact on workers.

Proper understanding of the elements involved in an arc flash is key to designing an installation. Heat is a major factor in an arc flash/blast event. Because of the intense heat generated in both radiation (ultraviolet and infrared) and the plasma arc (large fireball that can reach several thousand degrees), protection from this heat is the most important factor.

An important fact is that the temperature of the arc flash reduces quickly, dropping as the square of the distance from the source. As an example, if at one foot, the temperature is at 10,000 degrees, at two feet, the temperature would be (1/2) 2 X 10,000 = 1/4 X 1,000 = 2,500 degrees. Since the temperature at the arc source may be over 30,000 degrees F, the distance needed to assure safety can be many feet without barriers such as arc suppression blankets. This knowledge suggests that blanket size is a consideration.

The second factor is the pressure wave that is generated from the rapid expansion of air next to the arc source. Controlled testing shows that current level has a dramatic effect on the pressure wave. Little pressure was generated when amperages were under 15,000 amps (15KA). With amperages over 15KA, the pressure increased exponentially, as verified by high-speed photography.

This pressure wave manifests itself by the distance the blanket would distort as the amperage increased. On a test blanket, there was almost no movement at 5KA, a little at 15 KA, maybe 4 inches at 25KA, but at 40KA the distortion reached almost 18 inches. This distortion affects the suspension system by putting tremendous stress on the blanket, straps, anchors and hardware. Like the dissipation of heat, the pressure wave decreases with the square of the distance from the source, again suggesting that blanket size is included in the installation.

The effects of a pressure wave can be examined with and without an arc suppression blanket. Without the blanket, the pressure wave is known to exert a force of 400 to 500 pounds on a worker. This force will shove the worker into whatever is in the way. If an arc suppression blanket is between the fault and the worker, the blanket will absorb the force before it reaches the worker. As the area of the blanket is greater than the area of the worker, a much greater force must be supported. It is not unreasonable to estimate the pressure wave at 1 pound/in2. If the blanket is a 6 ft. X 8 ft., the total area is 6 X 8 X 144 = 6,912 square inches, resulting in a force of 6912 lbs. This much force must be accounted for in the design and installation of the blanket.

The third factor involved in an arc blast is the resulting fire after the arc blast that can consume anything combustible, including arc suppression blankets. There are four problems with fire: the first is the continued generation of heat, second the generation of toxic gasses, third the reduction in oxygen levels, and fourth is the possible melting and dripping of hot substances such as molten glass or plastic. This factor suggests that the installation include consideration of not only the blanket, but also the materials used in its installation such as straps, ropes and connectors.

Using these factors, we can determine how to best install an arc suppression blanket. The important points in installing the blanket are using the proper blanket, the best method of installation, and materials/hardware for supporting the blanket.

ASTM F2676 is the guide to selecting the proper product. The standard rates blankets by the amount of energy they are capable of absorbing before failure, evaluating them by three criteria. First is their ability to resist the arc breaking through. Blankets must not burn through within 10 cycles (10/60’s of one second) at its rated amperage, either 15 KA (15,000 amps), 25KA or 40 KA. Second is its ability to stay attached. After 10 cycles at its maximum rated amperage, it must still have all of its attachment points and attachments intact. Finally is its ability to self-extinguish within 30 seconds after the arc event with no melting or dripping materials. ASTM F2676 does not, however, test or certify arc suppression blankets for wrapping.

Blanket Attachment Issues and Options
Because of the complexity and arrangement of the wiring and splicing, the variety of vault and manhole sizes and configurations, the composition of the vault’s walls and hardware and the stresses exerted on them from the environment, no one methodology outlined can be recommended solely. Each vault will have its own sets of advantages and limitations as to which technique would be most useful.

The following methods have been derived from testing done over the last several years and in conjunction with several utility companies. Each method stemmed from the fundamental concept: “When possible, channel energy – don’t challenge it.”

The “J” Method
The “J” installation is so named because properly installed, an end view of the installed blanket looks like the letter J. The blanket is placed in front of the racks and splices with the bottom tucked back toward the vault wall. The blanket top is arrayed with the middle slightly loose, so that blanket bows out, acting like a funnel. The potential arc blast is redirected upwards from the bottom of the blanket and its energy is channeled up and out of an opening such as a manhole.

The Wrapped or Clamshell Method
The wrap method is a loose wrap of a large blanket around the splice and tied to the cable loosely in the middle and at the ends of the blanket. To create a “clamshell,” a regular blanket is placed over the wrapped blanket and is anchored top and bottom to the vault wall with the open end of the “C” shape pointed to the vault wall.

The intent is to channel the energy sideways away from the worker. Since one of the blankets is lying directly on the splice, a second blanket system is arrayed as a precaution. Extra attention should be used in the wrap installation as there needs to be at least two layers around the cable with an opening of six to eight inches of slack to provide room for the escaping blast.

The wrap method, although allowing quick installation, is not recommended since it can cause secondary problems. If an arc flash occurs the blanket will fall back onto the hot cable. The hot cables provide heat, which will not allow the blanket to self-extinguish.

The following pictures show a “tight” wrap as tested at Kinetrics Labs in Toronto, Canada. The first picture is of the installation. Note the tight wrapping around the cable. The next four photos show the development of the failure. During the test at 30 KA, it took only half of the first cycle to break the three Kevlar straps, open the blanket and allow the blast to proceed unimpeded.

The Suspension Wall Method
This method was invented and tested by Progress Energy and is a device made of steel piping that is assembled in the vault and attached to screw jacks. The jacks are tightened, exerting pressure on the ends and thus holding the structure in place. A blanket is attached to these supports creating a barrier wall. It can be used against the vault wall or away from it. Creating a clean and secure surface for the pressure pads is a challenge, but in testing at the Kinetrics Lab it has performed well in the test vault including the management of 40KA/10 cycle shots. However, in some applications it has proven to be difficult to get the piping pieces into the manhole or vault.

The Weave Method
This method was developed by Detroit Edison and assumed that the attachment points for the blanket would be behind the splices, which are located on racks. In testing we used the Suspension Wall Device up against the vault wall and fitted it around the splices. Of the three splices the middle was de-energized while the top and bottom were energized.

The blanket is attached at the top in the same manner as the “J” Method and then woven behind the dead circuit and then back into the front of the rack and draped down the rest of the racks and splices. At the bottom the blanket is folded back toward the vault wall and secured. This has proven to be a trouble-free and user-friendly method.

Physical Attachments
Work methods and practices chronicled here have been created by utility professionals. There are three areas considered for attachments. These are the wall or stanchion, the blanket itself and intermediate straps and related hardware.

Blankets need a strong base for attachments. These bases are usually the wall of an underground bunker or something attached to that wall. To quickly attach a blanket to a wall, either fixed or removable concrete anchors are popular for two reasons: first they are easy to install and second some models can be reused, holding down hardware costs.

Another attachment method is to use stainless steel or galvanized concrete struts and clamps. This is a common choice by many utilities as they are already widely used in their systems. Struts and clamps are also used when the integrity of the vault wall is questionable and there is a need to spread the load. In many cases, these anchoring points are already available, needing only slight modification.

Blankets tested under ASTM F2676 are certified using all of the blanket’s attachment points. For that reason, you must use all of the attachment points provided on the blanket to be in compliance with the ASTM standard.

The amount of heat and stress affects the choice of attachments connecting blankets to solid supports such as walls or stanchions. Even though attachments are usually at the edge of the blanket and are not directly in the path of an arc source, they can experience brief temperatures of several thousand degrees. In combination with the heat is the force exerted on the attachments.

In testing at Kinetrics as well as in utility use, blankets are supported by either nylon or aramide straps. Adjustments are made by metal cam buckles and the ends of the straps have connectors such as carabiners. In hundreds of tests, the metal cam buckles and carabiners have never failed, but the strapping has. Non-FR nylon strapping or even “FR nylon” usually holds the initial stress, but often burns after an arc event. In general, if the potential amperage is less than 15KA with no more than 10 cycle clearing time and the blanket is larger than 4 ft. x 5 ft., nylon will hold the blanket. With higher currents and/or smaller blankets, aramide strapping should be used. Other types of adjustable strapping materials can also be used, such as stainless cable, but precaution should be used to prevent electrical problems caused by the metal.

About the Authors: Michael R. Mulvaney is the Sr. Safety & Health Engineer for DTE Energy, Detroit, Michigan. Victor L. Petrovic, Ph.D. is the Technical Director for Therm-Equip in Canton, Ohio.

video

IP ARTICLE VAULT 2004 - 2015

Human Performance Tools: Important or Critical?

2014 USOLN Safety Award Winners Announced

Arc Flash and the Benefits of Wearing PPE

Closing the Safety Gap

Chainsaw Safety, Planning and Precision Felling Techniques

Train the Trainer 101: Substation Entry Policies

Voice of Experience: How Does the Employer Ensure and Demonstrate?

December 2014 Q&A

December 2014 Management Toolbox

Lessons Learned, Successful Implementation of Behavioral Safety Coaching

The Pain Game: Preventing MSDs

Eliminating Excuses

Training for the New Century

Fall Protection by the Numbers

Injury Free Change

What It Takes to be a Safety and Compliance Leader

Why Single-Point Grounding Works

The Burning Question

Notes From the Underground

Leadership Influencing the Culture

Ergonomics: Preventing Injury

Taking Safety to the Next Level

4 Rules to Live By

Frostbite

A Friend in Need at Indiana Rural Electric Coops

Cleaning Rubber Goods for Safety

Lowering the Threshold

CAVE-IN! Increasing Job Site Safety & Reducing Costs

Keeping the ‘Fighter Pilots’ of Your Company Safe

Safety Comes First at SM Electric

Dramatic Results

Focusing on Safety at Comcast

When is a Lineman a Lineman?

Making Sure Everyone Goes Home Safe at Southern California Edison

Stay Alert! Work Safe!

Everyone Benefits at Charter Communications

Dissecting an OSHA Inspection

Top Five PPE Mistakes

Ultimate Protection

Learning Curve

Total Success at Dominion

NESC-2007 Update

Making Safe Choices

Tips for Improving Incident Investigation Interviews – Part 1: Preparation

The Key to Safety at KCP&L

Digging Out – The Interagency Snow Rescue Task Force

LockOut TagOut

Tips for Improving Incident Investigation Interviews- Part 2: Contact Time

Dreams Can Become Reality: SDG&E Flex Center

Bridging Communication Gaps

Equipotential Grounding at AEP

Training Development

Focusing on a Safety Culture at Consumers Energy

Substations: Eliminating the Dangers Within

Ensuring Safety at Grand Bahama Power

Perfect Storm – The Case for AED’s

Embracing Change: Think Human Performance

NESC 2007 FLAME RESISTANT CLOTHING

Managing Safety Rule Violations

Passion for Safety

How to Bulletproof Your Training

Tower Rescue Pre-planning Pays Off

Managing Safety

Effective Fall Protection for Utility Workers

Safety Information Superhighway

Inspection of Wooden Poles

Free Climbing vs. Safer Climbing

Safety Culture Success

Inspecting, Cleaning and Storing Live-Line Tools

Arc Flash – Are You in Compliance?

Human Performance

Training Second Point of Contact

Preventing Underground Damage

Keeping Things Safe in the Field and the Office

Winter Safety Vehicle Checklist

Strategies for Safety in the Wind Industry

What’s in a Number?

How to Choose and Use Ergonomic Hand Tools

Meeting the Challenge

Machine Safety

What You Need to Know About Substations

Moving from Operations into Safety or Training

Distribution Dispatcher or System Operator?

High Visibility and Arc Ratings for Flame Resistance

Stuck in the Mud

Aerial Rescue

Going With the Wind

Incident Analysis

Hidden Traps of Generator Use and Backfeed

Making the Right Choice

Soil Resistivity Testing & Grounding System Design: Part I of II

Succession Syndrome

Making Safety a Core Value

Floodwater Hazards and Precautions

Know the Signs and Symptoms of Heat-Related Illnesses

Huge Steps

Seamless and Compliant

Soil Resistivity Testing & Grounding System Design: Part II of II

Aerial Lifts

How Good Are Your Tailgates?

Root Cause Analysis

Maturity Matters

What Do We Do About Arc Hazard?

NESC-2012-Part 4: Summary of Change Proposals

A FULL Commitment

Arc Suppression Blanket Installation

What Does NFPA 70E Mean To You?

How Safe Are Your Ground Grids?

Introducing a New Certification Program for Utility Safety Professionals

Confused About Arc Flash Compliance?

Analyzing Safety and Hazards on the Job

Error-Free Performance

People Focused Safety

No Substitute

Error-Free Performance: Part II

Heard It Through the Grapevine

Best Practices

Line of Fire

Is Your Company Ready for the Next Disaster?

Preventing Employee Exposure to Pesticides

Compressed Gas Cylinder Safety

LOTO vs. Switching and Tagging

Are You on Cruise Control?

Solid Footing

Hand Protection

Crane & Derrick Compliance

Mind Control: Distractions, Stress and Your Ability to Work Safely

Rubber Insulating Line Hose

Procedure for Reducing Injuries

Huskie Tools Opens New Fiberglass Restoration Division

A92.2: The 2009 Standard

Vehicle Operation Winter Readiness

ATV Safety Begins with Proper Training

Innovate or Follow: The Argument Against A Best Practice

Northeast Utilities Takes Safety Off-Road

High-Pressure Hydraulic Injection Injuries

100 Percent Fall Protection: A Joint Union-Management Effort

Crew Foreman Needed: Who Do We Pick?

Behavior Safety: A Safety Program’s Missing Link

Challenges & Successes

Drop Zone Management: Expanding Our View of Line of Fire

Taking Stock of Your Fall Protection Compliance

Live-Line Tool Use and Care

Employee Training: How Hard Can It Be?

Supervisory Skills for Crew Leaders

Equipment: Back to Basics

A Second Look at Safety Glasses

Competition for a Cause

Human Behavior and Communication Skills for Crew Leaders

Cultivating a Mature Workforce

What’s Your Seat Belt IQ?

Substation Safety

No-Voltage Testing

Five PPE Safety Challenges

Safety Circuitry: The Power in the Brain

Arc Flash Exposure Revisited: NESC 2012 Part 4 Update

T&D Best Practices for Crew Leaders

CUSP Basics: Introduction to Human Performance Principles

Felling of Trees Near Power Lines

Working in Winter

Back to the Basics: PPE 101

Hearing Conservation: An Interesting Challenge

T&D Safety Management for Crew Leaders

Basic Qualifications of Employees

FR Layering Techniques

Safety Rules and Work Practices: Why Don’t They Match Up?

Effective Customer Relationships for Crew Leaders

The Value of Safety Certification

Safety Leadership in a Written Pre-Job Briefing

Communication: The Key to Great Safety

Safe Use of Portable Electric Tools, Cords and Generators

Keys to Effective Fall Protection

Integrity and Respect: Two of Our Most Important Tools

The Intersect: A Practical Guide to Work-Site Hazard Analysis

Strategic Safety Partners

Behavior Safety Training for Safety Committee Members

Combating Overuse and Overexertion Injuries

Safe Digging – Get the 411 on 811

Apprenticeship Training

How S.A.F.E.T.Y. Brought Bluebonnet Through the Fires

Formal vs. On-the-Job Training

That’s What I Meant to Say: Safety Leadership in Communication

The Value of Personal Protective Equipment

Safety and Human Performance: You Can’t Have One Without the Other

Oh, No! Changes in the Workplace

Performance Improvement: Barriers to Events

Train the Trainer 101: Ferroresonance Explained

Voice of Experience: Safety Excellence Equals Operational Excellence

A Mirror: Your Most Important PPE

Care of Portable Ladders

Voice of Experience: FMCSR Compliance: Driver Qualification Files

Train the Trainer 101: Enclosed Space Rescue

Keys to Evaluating and Comparing Arc-Rated and Flame-Resistant Fabrics

Raising the Bar, Lowering the EMR

How Six Sigma Can Improve Your Safety Performance

Detecting Shock Hazards at Transmission Line Work Sites

Care and Maintenance of Climbers

Voice of Experience: Are You Ready for the Big Storm?

Train the Trainer 101: Working from Crane-Mounted Baskets

Learning Leadership: The Leadership Paradigm Shift

Are You Prepared for the Next Generation of Lineworkers?

Implementing a Zero Injury Program

Public Safety and Our First Responders

Managing Cold Stress

Live-Line Work on the Jersey Shore

Soil Classification and Excavation Safety

Voice of Experience: The Definition of Personal Protective Equipment

Learning Leadership: Leadership Skill Set 1: Self-Awareness

Evaluating Crew Supervisors

Train the Trainer 101: Arc Hazard Protection

NESC and ANSI Z535 Safety Sign Standards for Electric Utility Power Plants and Substations

Working Safely with Chain Saws

The Globally Harmonized System for Classifying and Labeling Chemicals

Voice of Experience: The Cost of Business

Train the Trainer 101: Understanding Grounding for the Protection of All Employees

Learning Leadership: Leadership Skill Set 2: Self-Regulation

Occupational Dog Bite Prevention & Safety

Safety Awareness for Substations

Bighorn Sheep vs. Lineworkers: What’s the Difference?

OSHA Job Briefing Basics

Voice of Experience: Training for the Qualified Employee

Train the Trainer 101: ASTM F855 Grounding Equipment Specs Made Simple

Foundation Drilling Safety: The Aldridge Electric Story of Success

The Authority to Stop Work

Starting From the Ground Up

Understanding Step and Touch Potential

Multitasking vs. Switch-Tasking: What’s the Difference?

Voice of Experience: Incidents and the Failure to Control Work

Train the Trainer 101: Live-Line Tool Maintenance Program

Passing the CUSP Exam

Learning Leadership: Leadership Skill Set 4: Social Awareness

Ergonomics for Lineworkers

Are Your Temporary Protective Grounds Really Protecting You?

Voice of Experience: Working On or Near Exposed Energized Parts

Train the Trainer 101: Why You Need More than 1910 and 1926

Transitioning to FR Clothing

Leadership Skill Set 5: Social Persuasion

Safety Management During Change

Spice It Up!

The Singing Lineman

Emergency Action Plans for Remote Locations

Trenching and Excavations: Considerations for the Competent Person

Traffic Safety for Lineworkers

Using Best Practices to Drive Safety Culture

Voice of Experience: The Globally Harmonized System is Here

Train the Trainer 101: Grounding Trucks and Mobile Equipment

The Power of an Effective Field Observation Program

What OSHA’s Proposed Silica Rule Means to You

2013 USOLN Safety Award Winners Announced

Learning Leadership: Personal Protective Emotional Armor: Part 1

Electrical Capacitors in AC Circuits

Improving Safety Through Communication

The Benefits of The CUSP Credential

Voice of Experience: Why Did I Do That?

Train the Trainer 101: Practical Elements for Developing a Safety Culture

Learning Leadership: Personal Protective Emotional Armor: Part 2

Fact-Finding Techniques for Incident Investigations

Electrical Safety for Utility Generation Operations Personnel: A Practical Approach

Addressing Comfort and Contamination in Arc-Rated Clothing

Are You Your Brother’s Keeper?

2013 iP Safety Awards

A Key to Safety Performance Improvement

Salt River Project: Devoted to Safety Excellence

Train the Trainer 101: Safety Incentive Programs

Voice of Experience: OSHA 300 Record-Keeping Rules

Understanding and Influencing the ‘Bulletproof’ Employee

Sustaining Safety Successes

Accident Analysis Using the Multi-Employer Citation Policy

PPE: Much More Than Basic or General Protection

Voice of Experience: Understanding Enclosed and Confined Spaces

Train the Trainer 101: OSHA Forklift Certification Requirements

June 2014 Q&A

Injury Prevention Through Leadership, Employee Engagement and Analytics

NFPA 70E Arc Flash Protection for Nonexempt Industry Workers

The Final Rule

Distributed Generation Safety for Lineworkers

The Perils of Distracted Driving

August 2014 Q&A

Voice of Experience: OSHA Eye and Face Protection Standards

Train the Trainer 101: Fall Protection and the New Rule

Responding to Pole Fires

SRP Rope Access Program Addresses Towers of Power

Elements of an Effective Safety Committee

Mitigating the Risks of Aerial Patrols

Job Briefing for One

Culture Eats Programs for Breakfast

October 2014 Q&A

Voice of Experience: Flame-Resistant Apparel is Now PPE

Train the Trainer 101: Stringing in Energized Environments

The Risks and Rules of Chainsaw Operation

Behavior-Based Safety: What’s the Verdict?

Photovoltaic Solar Safety Management for Utilities

Drones and the Future of Tower Safety

Storytelling as a Management Tool

Safety and Common Sense

Snubbing to Steel Lattice Structures: Lessons Learned

February 2015 Management Toolbox

February 2015 Q&A

Voice of Experience: The Importance of Job Briefings

Train the Trainer 101: Addressing Anchorages

Recent PPE Changes and 2015 Trends

Growing a Human Performance Culture

Measuring, Planning and Cutting Methods for Chainsaw Operators

The Importance of Matching Evidence Marks in Accident Investigations

Safe By a Nose

Overhead Utility Hazards: Look Up and Live

April 2015 Management Toolbox

April 2015 Q&A

Voice of Experience: OSHA Updates to Arc-Rated FR Clothing Requirements

Train the Trainer 101: The OSHA-EEI Subpart V Settlement

The Safety Side Effect: How Good Supervisors Coincidentally Improve Safety

Facing Unique Challenges

The Roller-Coaster Life Cycle of IEEE 1307

The Power of Human Intuition

Thirty Years of Personal Perspective

The Most Important Tool on the Job Site

June 2015 Management Toolbox

June 2015 Q&A

Voice of Experience: Fundamentals of Underground Padmount Transformers

Train the Trainer 101: Back to Basics: ‘Gentlemen, This is a Football’

Arrive Alive

How to Navigate the FR Clothing Marketplace

Making the Switch

Understanding OSHA Electric Power Training Requirements

Distribution Switching Safety

Human Performance and a Rat Trap

August 2015 Management Toolbox

August 2015 Q&A

Voice of Experience: Power Generation Safety and the OSHA Update

Stringing Best Practices: Mesh Grips vs. Preforms

Understanding Safety Culture Through Perception Surveys

RF Safety for Utility Workers

2015 USOLN Safety Award Winners Announced

Train the Trainer 101: Practical Underground Safety: Handling Neutrals and Rescue

Voice of Experience: PPE Regulatory and Consensus Standard Requirements

December 2015 Q&A

December 2015 Management Toolbox

The 911 Dilemma

Spotters: A Critical Element of Site Safety

Coping With Industry Changes

The Safety Coaching Observation Process

Fundamentals of Substation Rescue Plans

Recruiting and Training the Next Generation

Shifting Your Organizational Safety Culture

Investigating Industrial Hygiene at Salt River Project

Train the Trainer 101: Practical MAD and Arc Flash Protection

Voice of Experience: Clearing Up Confusion About 1910.269

October 2015 Q&A

October 2015 Management Toolbox

N95 Filtering Face Pieces: Where Does Your Organization Stand?

Stepping Up Steel Safety Education

Rigging Fundamentals for Utilities

Arc Flash Mitigating Technologies and the OSHA Final Rule

Train the Trainer 101: Practical Personal Protective Grounding

OSHA and the Host-Contractor Relationship