Skip to main content

LOOKING FOR SOMETHING?

October 2015 Q&A

Written by Jim Vaughn, CUSP on . Posted in , , .

Q: Is equipotential grounding now a personal protective grounding method required by OSHA?

A: The answer is yes, even though OSHA doesn’t specifically say so in terms we easily understand. The terminology isn’t OSHA’s fault. As an industry, we adopt certain familiar ways of describing or discussing things and simply don’t recognize what OSHA is trying to communicate unless we do some diligent research. In 29 CFR 1910.269(n)(3), OSHA requires arrangement of grounds to protect employees without using the word “equipotential.” The title of the rule, however, is “Equipotential zone.”

The full text of 1910.269(n)(3) states, “Temporary protective grounds shall be placed at such locations and arranged in such a manner that the employer can demonstrate will prevent each employee from being exposed to hazardous differences in electric potential.” By definition, that is equipotential grounding.

Following the rule is a note that is pretty clear but largely missed by readers of the standard. It reads, “Appendix C to this section contains guidelines for establishing the equipotential zone required by this paragraph. The Occupational Safety and Health Administration will deem grounding practices meeting these guidelines as complying with paragraph (n)(3) of this section.”

There are three important things to recognize here. Rule (n)(3) is only about 30 words in a section on grounding that has hundreds of words, but those 30 words are probably some of the most significant in the standard when it comes to protecting employees. Pay particular attention to the part of the note to paragraph (n)(3) that states “equipotential zone required by this paragraph.” The second important thing here is a reminder that notes are part of the rules and can often clarify for us what a rule is about. Finally, in this case Appendix C is one of the best in the standard as far as communicating effective safe work procedures when it comes to grounding for personal protection.

Q: What are the safety requirements for grounding conduit racks in an environment exposed to induction?

A: Wherever there is induction or sources of current flow in a grounded system, there is potential for injury to persons who come in contact with those conductive surfaces. That could be the case with electrical conduits on a metal conduit rack. There are no standards we are aware of that include a blanket requirement for grounding of a pipe rack simply because it is near a power line. The rules for grounding and bonding of raceways and structures are found throughout Article 250 of the National Electrical Code.

The requirements for bonding and grounding are based on the likelihood that a conductive surface could become energized. Conduit, for example, is considered likely to become energized because it has electrical conductors within it that could become worn or shorted, and because the conduit is the fault current path from power equipment back to circuit protective devices in parallel with the circuit grounds. If the pipe rack was in a substation, the rack would probably be grounded to the station grid to minimize differences in potential between loosely connected racks and solidly grounded conduits.

Outside of a substation, a metal pipe rack should be grounded if the pipe rack is electrically isolated and subject to a source of induction or current from the grounded conduit. Based on the NEC rule, the rack might not be considered likely to become energized, but in the real world a conductive pipe rack holding a grounded conduit subject to a fault may, for the duration of the fault, become energized. Persons in contact with the rack may be shocked, depending on their path to ground and the magnitude of the fault current. This generally meets the criteria – may become energized and is subject to contact by persons or animals. We mention animals because NEC Article 547 has equipotential requirements for electrical installations in agriculture to prevent electrical disturbances, in particular with milking operations.

A conduit rack would be considered electrically isolated if it had nonconductive conduit pipe on it or if the conductive – and hopefully grounded – pipe on it was not clamped. The pipe, if conductive, clamped and properly grounded at its terminal points, will provide bonding of the rack. With electrical conduit, there are occasions that alternating current on poorly jointed conductive pipe will create noise that sometimes interferes with wireless communications. Solid bonding of the pipe to the rack is necessary to eliminate the noise.

So, the answer to your question is that it depends. You can simply choose to ground and bond if there is any chance at all of potential differences. If you want to experiment, you can also measure for potential differences using a low-scale setting on your VOM. If there is a significant voltage source in the grounded surfaces, a voltage can be measured across any ground path that has resistance in it, such as between racks and conduit.

Q: How do utilities treat the risks of and requirements for silica dust exposure? With respect to the OSHA guidelines, it would seem that we have little to worry about or do to be in compliance.

A: Your question comes to us at an opportune time. In the August 2015 issue, Incident Prevention published an article by Jarred O’Dell, CSP, CUSP – “N95 Filtering Face Pieces: Where Does Your Organization Stand?” (see https://incident-prevention.com/blog/n95-filtering-face-pieces-where-does-your-organization-stand) – regarding silica dust and low-level exposure compliance issues. The OSHA standard as well as the consensus standards related to silica exposure were written assuming the exposures were in a workplace where dust was common and that the exposures were frequent and long-term. In these cases, it is fairly easy for a worker to wear an air-sampling pump and produce an accurate, measurable exposure rating.

Most utility-related silica exposures occur very infrequently, and thus it is not possible to measure them. We may infrequently saw-cut pavement or a sidewalk to set a pole and even then we often use contractors. We do drill concrete poles, and that is likely the most frequent source of silica exposure and a circumstance in which positioning is hard to choose relative to dust. We are aware of a case where a health technologist followed crews for four months, measuring dust created by a pole-setting crew, and he couldn’t make a case for requiring protection. The problem is that may not be the case for 40 years of exposure. A worker may not be exposed while setting poles during the testing period. He may then spend a month cutting sidewalks for pole sets or two years cutting roadways once every two to three weeks to convert underground conduit systems, all the while inhaling low amounts of suspended silica crystals that don’t meet the exposure risk action level. Other exposure risks include those to a contract lineman, for example, who may have 50 employers over the course of his career with no consistent silica policy in place or monitoring of his workplace exposures.

The standards do not recognize or discuss compounded risk over a 40-year career. They focus on exposures like those faced by workers who cut concrete every day. As such, even if we have no regulatory standard obligation, we do have a moral obligation to provide education on long-term exposure and risks as well as a robust voluntary use program. Consider annual refresher training on the cumulative risks of silica and voluntary dust mask use. And do read Jarred O’Dell’s article in the August 2015 issue of iP as you formulate your silica risk prevention program.

Q: What are circulating currents in overhead systems? I have always thought circulating current had something to do with ground rods.

A: When we refer to circulating current, in particular regarding hazards, we are usually referring to grounded systems. Sometimes it’s the case of dissimilar metals, like ground rods or screw anchors and gas pipes in damp earth in a galvanic cell relationship, creating currents that flow through the respective components like a battery. That’s a problem for engineers. For overhead lineworkers, there has been a rise in fatal contacts in recent years associated with currents flowing or circulating in grounds, sometimes installed for their protection.

As an industry, we have been good at increasing the use of grounds for safety, but not so good at training on the limitations and hazards created by grounding. When we are told it’s not safe to touch unless it’s grounded, we are only hearing part of the story. Grounding does not make all conductors safe, especially if you create a gap in a grounded circuit and then bridge the gap with your body, or if you get between two grounds that are at different potentials because of resistance in the respective circuit paths. We could write about this for pages and pages, but let’s stick to your question with this scenario.

Consider a wooden H-structure with three 500-kV phases suspended under the crossarm. The two pole tops have a 3-strand, 7-galvanized static on one pole top and a strand-shielded fiber-optic cable (OPGW) on the other pole top. The pole tops are tied across with a 3-strand bonding them together, and that strand is connected to the pole bond at each end. All of this is very typical. Our pole is in a 60-mile transmission corridor with two other 500-kV circuits. On our circuit, the static and OPGW are bonded at every pole so there is very little induction current on the statics or pole bonds.

Today we take an outage on the circuit to do some work. With the circuit de-energized, we ground phases one and two to the right-hand pole bond wire and phase three to the left-hand pole bond wire. In doing so, we have now coupled induction on the circuit to our two pole bonds. In the configuration described, part of the current will go down to earth. However, we have also closed a fairly low-resistance path that loops between the phases, to the pole bonds by way of the grounds and up the pole across the pole-top bonding, creating a closed loop for current to flow. This is a grounded circuit intimately in contact with the pole. A voltmeter will not detect voltage despite the circulating alternating current. It appears safe to touch, but it isn’t. If you open the loop at any point, a very high voltage will appear, often measured in thousands of volts. Of course, it’s dependent on the voltage of the nearby lines, length of the circuits and so on. But it is the case that when there has been opportunity to measure these circulating currents, often after accidents, currents measured are frequently reported in the 100-amp range. Wherever you close a loop in a grounded system, even if it’s through earth, there is the possibility of current flow.

Do you have a question regarding best practices, work procedures or other utility safety-related topics? If so, please send your inquiries directly to kate@incident-prevention.com. Questions submitted are reviewed and answered by the iP editorial advisory board and other subject matter experts.

IP ARTICLE VAULT 2004 - 2015

Human Performance Tools: Important or Critical?

2014 USOLN Safety Award Winners Announced

Arc Flash and the Benefits of Wearing PPE

Closing the Safety Gap

Chainsaw Safety, Planning and Precision Felling Techniques

Train the Trainer 101: Substation Entry Policies

Voice of Experience: How Does the Employer Ensure and Demonstrate?

December 2014 Q&A

December 2014 Management Toolbox

Lessons Learned, Successful Implementation of Behavioral Safety Coaching

The Pain Game: Preventing MSDs

Eliminating Excuses

Training for the New Century

Fall Protection by the Numbers

Injury Free Change

What It Takes to be a Safety and Compliance Leader

Why Single-Point Grounding Works

The Burning Question

Notes From the Underground

Leadership Influencing the Culture

Ergonomics: Preventing Injury

Taking Safety to the Next Level

4 Rules to Live By

Frostbite

A Friend in Need at Indiana Rural Electric Coops

Cleaning Rubber Goods for Safety

Lowering the Threshold

CAVE-IN! Increasing Job Site Safety & Reducing Costs

Keeping the ‘Fighter Pilots’ of Your Company Safe

Safety Comes First at SM Electric

Dramatic Results

Focusing on Safety at Comcast

When is a Lineman a Lineman?

Making Sure Everyone Goes Home Safe at Southern California Edison

Stay Alert! Work Safe!

Everyone Benefits at Charter Communications

Dissecting an OSHA Inspection

Top Five PPE Mistakes

Ultimate Protection

Learning Curve

Total Success at Dominion

NESC-2007 Update

Making Safe Choices

Tips for Improving Incident Investigation Interviews – Part 1: Preparation

The Key to Safety at KCP&L

Digging Out – The Interagency Snow Rescue Task Force

LockOut TagOut

Tips for Improving Incident Investigation Interviews- Part 2: Contact Time

Dreams Can Become Reality: SDG&E Flex Center

Bridging Communication Gaps

Equipotential Grounding at AEP

Training Development

Focusing on a Safety Culture at Consumers Energy

Substations: Eliminating the Dangers Within

Ensuring Safety at Grand Bahama Power

Perfect Storm – The Case for AED’s

Embracing Change: Think Human Performance

NESC 2007 FLAME RESISTANT CLOTHING

Managing Safety Rule Violations

Passion for Safety

How to Bulletproof Your Training

Tower Rescue Pre-planning Pays Off

Managing Safety

Effective Fall Protection for Utility Workers

Safety Information Superhighway

Inspection of Wooden Poles

Free Climbing vs. Safer Climbing

Safety Culture Success

Inspecting, Cleaning and Storing Live-Line Tools

Arc Flash – Are You in Compliance?

Human Performance

Training Second Point of Contact

Preventing Underground Damage

Keeping Things Safe in the Field and the Office

Winter Safety Vehicle Checklist

Strategies for Safety in the Wind Industry

What’s in a Number?

How to Choose and Use Ergonomic Hand Tools

Meeting the Challenge

Machine Safety

What You Need to Know About Substations

Moving from Operations into Safety or Training

Distribution Dispatcher or System Operator?

High Visibility and Arc Ratings for Flame Resistance

Stuck in the Mud

Aerial Rescue

Going With the Wind

Incident Analysis

Hidden Traps of Generator Use and Backfeed

Making the Right Choice

Soil Resistivity Testing & Grounding System Design: Part I of II

Succession Syndrome

Making Safety a Core Value

Floodwater Hazards and Precautions

Know the Signs and Symptoms of Heat-Related Illnesses

Huge Steps

Seamless and Compliant

Soil Resistivity Testing & Grounding System Design: Part II of II

Aerial Lifts

How Good Are Your Tailgates?

Root Cause Analysis

Maturity Matters

What Do We Do About Arc Hazard?

NESC-2012-Part 4: Summary of Change Proposals

A FULL Commitment

Arc Suppression Blanket Installation

What Does NFPA 70E Mean To You?

How Safe Are Your Ground Grids?

Introducing a New Certification Program for Utility Safety Professionals

Confused About Arc Flash Compliance?

Analyzing Safety and Hazards on the Job

Error-Free Performance

People Focused Safety

No Substitute

Error-Free Performance: Part II

Heard It Through the Grapevine

Best Practices

Line of Fire

Is Your Company Ready for the Next Disaster?

Preventing Employee Exposure to Pesticides

Compressed Gas Cylinder Safety

LOTO vs. Switching and Tagging

Are You on Cruise Control?

Solid Footing

Hand Protection

Crane & Derrick Compliance

Mind Control: Distractions, Stress and Your Ability to Work Safely

Rubber Insulating Line Hose

Procedure for Reducing Injuries

Huskie Tools Opens New Fiberglass Restoration Division

A92.2: The 2009 Standard

Vehicle Operation Winter Readiness

ATV Safety Begins with Proper Training

Innovate or Follow: The Argument Against A Best Practice

Northeast Utilities Takes Safety Off-Road

High-Pressure Hydraulic Injection Injuries

100 Percent Fall Protection: A Joint Union-Management Effort

Crew Foreman Needed: Who Do We Pick?

Behavior Safety: A Safety Program’s Missing Link

Challenges & Successes

Drop Zone Management: Expanding Our View of Line of Fire

Taking Stock of Your Fall Protection Compliance

Live-Line Tool Use and Care

Employee Training: How Hard Can It Be?

Supervisory Skills for Crew Leaders

Equipment: Back to Basics

A Second Look at Safety Glasses

Competition for a Cause

Human Behavior and Communication Skills for Crew Leaders

Cultivating a Mature Workforce

What’s Your Seat Belt IQ?

Substation Safety

No-Voltage Testing

Five PPE Safety Challenges

Safety Circuitry: The Power in the Brain

Arc Flash Exposure Revisited: NESC 2012 Part 4 Update

T&D Best Practices for Crew Leaders

CUSP Basics: Introduction to Human Performance Principles

Felling of Trees Near Power Lines

Working in Winter

Back to the Basics: PPE 101

Hearing Conservation: An Interesting Challenge

T&D Safety Management for Crew Leaders

Basic Qualifications of Employees

FR Layering Techniques

Safety Rules and Work Practices: Why Don’t They Match Up?

Effective Customer Relationships for Crew Leaders

The Value of Safety Certification

Safety Leadership in a Written Pre-Job Briefing

Communication: The Key to Great Safety

Safe Use of Portable Electric Tools, Cords and Generators

Keys to Effective Fall Protection

Integrity and Respect: Two of Our Most Important Tools

The Intersect: A Practical Guide to Work-Site Hazard Analysis

Strategic Safety Partners

Behavior Safety Training for Safety Committee Members

Combating Overuse and Overexertion Injuries

Safe Digging – Get the 411 on 811

Apprenticeship Training

How S.A.F.E.T.Y. Brought Bluebonnet Through the Fires

Formal vs. On-the-Job Training

That’s What I Meant to Say: Safety Leadership in Communication

The Value of Personal Protective Equipment

Safety and Human Performance: You Can’t Have One Without the Other

Oh, No! Changes in the Workplace

Performance Improvement: Barriers to Events

Train the Trainer 101: Ferroresonance Explained

Voice of Experience: Safety Excellence Equals Operational Excellence

A Mirror: Your Most Important PPE

Care of Portable Ladders

Voice of Experience: FMCSR Compliance: Driver Qualification Files

Train the Trainer 101: Enclosed Space Rescue

Keys to Evaluating and Comparing Arc-Rated and Flame-Resistant Fabrics

Raising the Bar, Lowering the EMR

How Six Sigma Can Improve Your Safety Performance

Detecting Shock Hazards at Transmission Line Work Sites

Care and Maintenance of Climbers

Voice of Experience: Are You Ready for the Big Storm?

Train the Trainer 101: Working from Crane-Mounted Baskets

Learning Leadership: The Leadership Paradigm Shift

Are You Prepared for the Next Generation of Lineworkers?

Implementing a Zero Injury Program

Public Safety and Our First Responders

Managing Cold Stress

Live-Line Work on the Jersey Shore

Soil Classification and Excavation Safety

Voice of Experience: The Definition of Personal Protective Equipment

Learning Leadership: Leadership Skill Set 1: Self-Awareness

Evaluating Crew Supervisors

Train the Trainer 101: Arc Hazard Protection

NESC and ANSI Z535 Safety Sign Standards for Electric Utility Power Plants and Substations

Working Safely with Chain Saws

The Globally Harmonized System for Classifying and Labeling Chemicals

Voice of Experience: The Cost of Business

Train the Trainer 101: Understanding Grounding for the Protection of All Employees

Learning Leadership: Leadership Skill Set 2: Self-Regulation

Occupational Dog Bite Prevention & Safety

Safety Awareness for Substations

Bighorn Sheep vs. Lineworkers: What’s the Difference?

OSHA Job Briefing Basics

Voice of Experience: Training for the Qualified Employee

Train the Trainer 101: ASTM F855 Grounding Equipment Specs Made Simple

Foundation Drilling Safety: The Aldridge Electric Story of Success

The Authority to Stop Work

Starting From the Ground Up

Understanding Step and Touch Potential

Multitasking vs. Switch-Tasking: What’s the Difference?

Voice of Experience: Incidents and the Failure to Control Work

Train the Trainer 101: Live-Line Tool Maintenance Program

Passing the CUSP Exam

Learning Leadership: Leadership Skill Set 4: Social Awareness

Ergonomics for Lineworkers

Are Your Temporary Protective Grounds Really Protecting You?

Voice of Experience: Working On or Near Exposed Energized Parts

Train the Trainer 101: Why You Need More than 1910 and 1926

Transitioning to FR Clothing

Leadership Skill Set 5: Social Persuasion

Safety Management During Change

Spice It Up!

The Singing Lineman

Emergency Action Plans for Remote Locations

Trenching and Excavations: Considerations for the Competent Person

Traffic Safety for Lineworkers

Using Best Practices to Drive Safety Culture

Voice of Experience: The Globally Harmonized System is Here

Train the Trainer 101: Grounding Trucks and Mobile Equipment

The Power of an Effective Field Observation Program

What OSHA’s Proposed Silica Rule Means to You

2013 USOLN Safety Award Winners Announced

Learning Leadership: Personal Protective Emotional Armor: Part 1

Electrical Capacitors in AC Circuits

Improving Safety Through Communication

The Benefits of The CUSP Credential

Voice of Experience: Why Did I Do That?

Train the Trainer 101: Practical Elements for Developing a Safety Culture

Learning Leadership: Personal Protective Emotional Armor: Part 2

Fact-Finding Techniques for Incident Investigations

Electrical Safety for Utility Generation Operations Personnel: A Practical Approach

Addressing Comfort and Contamination in Arc-Rated Clothing

Are You Your Brother’s Keeper?

2013 iP Safety Awards

A Key to Safety Performance Improvement

Salt River Project: Devoted to Safety Excellence

Train the Trainer 101: Safety Incentive Programs

Voice of Experience: OSHA 300 Record-Keeping Rules

Understanding and Influencing the ‘Bulletproof’ Employee

Sustaining Safety Successes

Accident Analysis Using the Multi-Employer Citation Policy

PPE: Much More Than Basic or General Protection

Voice of Experience: Understanding Enclosed and Confined Spaces

Train the Trainer 101: OSHA Forklift Certification Requirements

June 2014 Q&A

Injury Prevention Through Leadership, Employee Engagement and Analytics

NFPA 70E Arc Flash Protection for Nonexempt Industry Workers

The Final Rule

Distributed Generation Safety for Lineworkers

The Perils of Distracted Driving

August 2014 Q&A

Voice of Experience: OSHA Eye and Face Protection Standards

Train the Trainer 101: Fall Protection and the New Rule

Responding to Pole Fires

SRP Rope Access Program Addresses Towers of Power

Elements of an Effective Safety Committee

Mitigating the Risks of Aerial Patrols

Job Briefing for One

Culture Eats Programs for Breakfast

October 2014 Q&A

Voice of Experience: Flame-Resistant Apparel is Now PPE

Train the Trainer 101: Stringing in Energized Environments

The Risks and Rules of Chainsaw Operation

Behavior-Based Safety: What’s the Verdict?

Photovoltaic Solar Safety Management for Utilities

Drones and the Future of Tower Safety

Storytelling as a Management Tool

Safety and Common Sense

Snubbing to Steel Lattice Structures: Lessons Learned

February 2015 Management Toolbox

February 2015 Q&A

Voice of Experience: The Importance of Job Briefings

Train the Trainer 101: Addressing Anchorages

Recent PPE Changes and 2015 Trends

Growing a Human Performance Culture

Measuring, Planning and Cutting Methods for Chainsaw Operators

The Importance of Matching Evidence Marks in Accident Investigations

Safe By a Nose

Overhead Utility Hazards: Look Up and Live

April 2015 Management Toolbox

April 2015 Q&A

Voice of Experience: OSHA Updates to Arc-Rated FR Clothing Requirements

Train the Trainer 101: The OSHA-EEI Subpart V Settlement

The Safety Side Effect: How Good Supervisors Coincidentally Improve Safety

Facing Unique Challenges

The Roller-Coaster Life Cycle of IEEE 1307

The Power of Human Intuition

Thirty Years of Personal Perspective

The Most Important Tool on the Job Site

June 2015 Management Toolbox

June 2015 Q&A

Voice of Experience: Fundamentals of Underground Padmount Transformers

Train the Trainer 101: Back to Basics: ‘Gentlemen, This is a Football’

Arrive Alive

How to Navigate the FR Clothing Marketplace

Making the Switch

Understanding OSHA Electric Power Training Requirements

Distribution Switching Safety

Human Performance and a Rat Trap

August 2015 Management Toolbox

August 2015 Q&A

Voice of Experience: Power Generation Safety and the OSHA Update

Stringing Best Practices: Mesh Grips vs. Preforms

Understanding Safety Culture Through Perception Surveys

RF Safety for Utility Workers

2015 USOLN Safety Award Winners Announced

Train the Trainer 101: Practical Underground Safety: Handling Neutrals and Rescue

Voice of Experience: PPE Regulatory and Consensus Standard Requirements

December 2015 Q&A

December 2015 Management Toolbox

The 911 Dilemma

Spotters: A Critical Element of Site Safety

Coping With Industry Changes

The Safety Coaching Observation Process

Fundamentals of Substation Rescue Plans

Recruiting and Training the Next Generation

Shifting Your Organizational Safety Culture

Investigating Industrial Hygiene at Salt River Project

Train the Trainer 101: Practical MAD and Arc Flash Protection

Voice of Experience: Clearing Up Confusion About 1910.269

October 2015 Q&A

October 2015 Management Toolbox

N95 Filtering Face Pieces: Where Does Your Organization Stand?

Stepping Up Steel Safety Education

Rigging Fundamentals for Utilities

Arc Flash Mitigating Technologies and the OSHA Final Rule

Train the Trainer 101: Practical Personal Protective Grounding

OSHA and the Host-Contractor Relationship