Skip to main content

LOOKING FOR SOMETHING?

Faried-2-Web.jpg

Arc Flash Mitigating Technologies and the OSHA Final Rule

Written by Samy Faried on . Posted in , .

Faried-2-Web.jpg

On April 11, 2014, OSHA issued the final rule regarding 29 CFR 1910.269 and 1926 Subpart V. The final rule included modifications that address minimum approach distances, fall protection systems and hazards of electric arcs. Since the publication of the rule, there have been an extensive number of articles published that detail changes to 1910.269 and 1926 Subpart V. Those articles focus on explaining the changes but most lack information about arc flash mitigating technologies.

This article focuses on current technologies available to minimize and prevent exposure of workers to arc flashes. Employers must ensure workers are provided the necessary protection against these flashes, as it can mean the difference between life and death. According to NFPA 70E, arc flash incidents occur five to 10 times each day and account for 400 fatalities each year. Additionally, the Electrical Safety Foundation International has reported that more than 2,000 workers are treated annually for flash-related burns. The severity of a flash and the related severity of injury primarily depend on the magnitude of the arcing current and the duration of exposure. A typical three-cycle circuit breaker will interrupt fault currents in 50 milliseconds. Exposure to a temperature of 205 degrees Fahrenheit for 100 milliseconds may cause a third-degree burn, which will cause skin to fall off and may result in death.

The technologies currently on the market to assist in the mitigation and prevention of exposure to life-threatening arc flashes can generally be classified into four categories: those that reduce fault currents, those that reduce arc duration, those that increase work distance and those that minimize personnel presence and exposure.

Reducing Fault Currents
It’s not simply the extremely hazardous nature of arc flashes that has spurred utilities, manufacturers and other organizations to find better ways to mitigate risk. In the utility industry, there has been an increasing focus on safety in recent years for several reasons. Power systems are becoming more complex. The amount of electrical equipment being installed in utilities, factories and urban area facilities like shopping malls is on the rise. Consequences from fatal faults and electrical failures are greater than ever. In addition, economic losses continue to occur due to electrical faults.

One type of technology available to address these issues works to reduce arc fault currents, which are electrical currents that flow through the air between energized conductors, causing a severe temperature rise that is four times hotter than the surface of the sun. The tremendous temperature of the arc causes expansion of the surrounding air and exposed metals. High pressure can cause eardrums to rupture and lungs to collapse. Material and molten metal can travel at speeds exceeding 700 mph, which is fast enough to penetrate workers’ bodies. Arc flashes can cause death as far as 10 feet away.

Fortunately, fault current reduction technology can be implemented in both newly designed systems as well as existing facilities. Most electrical distribution systems include power transformers. For a new design, the lower the size, the lower the fault currents it allows. In addition, the higher the impedance of the transformer, the lower the incident energy becomes. These two factors are controlled by the designer of the system. Keep in mind there are also a number of other factors to be considered for optimum design.

For existing systems in which the size and impedance of the transformers have been decided, there are several technologies to limit the arcing current. The essence of these methods is to reduce fault currents as quickly as thousandths of a second. Electronically triggered current limiters are one of the foremost applicable technologies. However, the same technology may cause nuisance tripping and loss of production. One of the most intelligent and unique devices on the market is the Is-limiter, produced by ABB Inc. The device is set to trip based on a specific value of current and its rate of rise. The Is-limiter acts in 0.0006 seconds, reducing the exposure to workers.

Another retrofitting device, the Ultra-Fast Earthing Switch (UFES), is actually a combination of devices consisting of detection and release electronics and corresponding primary switching elements, which initiate a three-phase short circuit to earth in the event of a fault. At fewer than 1.5 milliseconds, the extremely short switching time of the primary switching element, in conjunction with the rapid and reliable detection of overcurrent and light, ensures that an arc fault is extinguished almost instantly upon occurrence. This action achieves the highest possible level of protection for personnel and equipment.

Other means of reducing arcing currents include using current-limiting fuses or current-limiting reactors.

Reducing Arc Duration
The longer the duration of an arc, the more potential it has to cause thermal damage to workers and equipment. Electrical systems are typically equipped with protection components, which include a brain (relays and sensors) and an interrupting device such as a circuit breaker or fuse. The duration of an arcing event consists of the relay or fuse operating time plus the circuit breaker or fuse interrupting time. By reducing an arc’s duration, worker safety will be greatly enhanced and equipment damage will be reduced. Among the tools and methods used for reducing arc duration are:
Energy-reducing maintenance switches. This type of switch is used during switchgear and motor control center maintenance periods. In maintenance mode, the switch will change relay settings, minimizing delays in interrupting fault currents.
Bus differential schemes. Relays are used to protect electrical systems and isolate the minimum portion of an electrical distribution system where the fault occurs. This is referred to as system coordination. The bus differential scheme is established to interrupt an arcing current without delays due to system coordination. The timing for the action of the differential relay can range from 12.5 to 25 milliseconds.
Zone selective interlocking. This scheme employs a wired connection between relays and trip units. It allows quick overcurrent clearing without drastically affecting system coordination.
Light detection relays. These relays provide a fast detection time – 2.5 milliseconds – and activate interrupting means to clear arcing faults. Light detection relays can be employed with the UFES in order to detect and interrupt an arc in approximately 4 milliseconds. Its operation includes a point sensor relay, which can be placed in a switchgear compartment or a fiber-optic sensor that can be installed across several switchgear frames. The light detection relays are adjusted to avoid normal illumination levels so they will detect and react to an arc flash event.

Increasing Work Distance
The OSHA final rule introduced higher restrictions on minimum approach distances (MADs). A MAD is the distance between the worker and where arcing can possibly start. Within the MAD, workers must be qualified to perform work and equipped with PPE, including a face shield and head protection when required.

As any industry worker likely knows, MADs are critical to job site safety. According to data reported in the July 2014 issue of Electrical Business magazine, 25 percent of arcing incidents occur without the presence of an operator, while 75 percent occur in the presence of an operator. Ten percent of those incidents occur while the operator is in front of closed-door equipment. Finally, 65 percent of arcing incidents occur when workers are engaged in operating or maintaining equipment.

To help increase work distance, several manufacturers now offer remote racking devices, which enable racking – connecting or disconnecting – of circuit breakers at a safe distance from electrical equipment. A remote racking device typically consists of a motor operator device that can be attached to the front of the switchgear and remotely operated so the worker will not be exposed to arc flashes associated with the subject operation. In addition, the system can be designed to include remote control of other functions.

Minimizing Personnel Presence
There are several ways to reduce personnel presence in areas where an arc flash could occur. To start, post warning labels in all of these areas. The labels must specify, among other items, the incident energy in calories per centimeter squared and the category of PPE that is mandatory for the incident energy level. Remember that anything above 1.2 cal/cm2 requires PPE.

Employers should also consider implementing arc-resistant equipment, which is designed to protect utility workers from the gases and other products of an arc flash.

Finally, adopt equipment that requires less periodic maintenance, which will reduce the need for operator presence. This type of equipment may include magnetically actuated circuit breakers that have fewer moving parts. These circuit breakers also have far fewer maintenance requirements – every five years – than typical spring-operated circuit breakers.

Conclusion
For the safety of their personnel and the public, utility managers must continue to educate themselves and affected employees about OSHA’s final rule. The technologies available today to reduce worker exposure to arc flashes are growing in number and offer greater protection than ever before. And because they can be used with new systems or retrofitted into existing systems, it’s worth the time spent to investigate all the options.

About the Author: Samy Faried is a field application engineer and regional business development manager at ABB Inc. A licensed professional engineer, he has more than 30 years of experience in electrical power systems, including utility generation, transmission, distribution and industrial systems. Faried was previously an adjunct professor at Brown University, Boston University, Northeastern University and the University of Central Florida. He can be reached at samy.faried@us.abb.com

IP ARTICLE VAULT 2004 - 2015

Human Performance Tools: Important or Critical?

2014 USOLN Safety Award Winners Announced

Arc Flash and the Benefits of Wearing PPE

Closing the Safety Gap

Chainsaw Safety, Planning and Precision Felling Techniques

Train the Trainer 101: Substation Entry Policies

Voice of Experience: How Does the Employer Ensure and Demonstrate?

December 2014 Q&A

December 2014 Management Toolbox

Lessons Learned, Successful Implementation of Behavioral Safety Coaching

The Pain Game: Preventing MSDs

Eliminating Excuses

Training for the New Century

Fall Protection by the Numbers

Injury Free Change

What It Takes to be a Safety and Compliance Leader

Why Single-Point Grounding Works

The Burning Question

Notes From the Underground

Leadership Influencing the Culture

Ergonomics: Preventing Injury

Taking Safety to the Next Level

4 Rules to Live By

Frostbite

A Friend in Need at Indiana Rural Electric Coops

Cleaning Rubber Goods for Safety

Lowering the Threshold

CAVE-IN! Increasing Job Site Safety & Reducing Costs

Keeping the ‘Fighter Pilots’ of Your Company Safe

Safety Comes First at SM Electric

Dramatic Results

Focusing on Safety at Comcast

When is a Lineman a Lineman?

Making Sure Everyone Goes Home Safe at Southern California Edison

Stay Alert! Work Safe!

Everyone Benefits at Charter Communications

Dissecting an OSHA Inspection

Top Five PPE Mistakes

Ultimate Protection

Learning Curve

Total Success at Dominion

NESC-2007 Update

Making Safe Choices

Tips for Improving Incident Investigation Interviews – Part 1: Preparation

The Key to Safety at KCP&L

Digging Out – The Interagency Snow Rescue Task Force

LockOut TagOut

Tips for Improving Incident Investigation Interviews- Part 2: Contact Time

Dreams Can Become Reality: SDG&E Flex Center

Bridging Communication Gaps

Equipotential Grounding at AEP

Training Development

Focusing on a Safety Culture at Consumers Energy

Substations: Eliminating the Dangers Within

Ensuring Safety at Grand Bahama Power

Perfect Storm – The Case for AED’s

Embracing Change: Think Human Performance

NESC 2007 FLAME RESISTANT CLOTHING

Managing Safety Rule Violations

Passion for Safety

How to Bulletproof Your Training

Tower Rescue Pre-planning Pays Off

Managing Safety

Effective Fall Protection for Utility Workers

Safety Information Superhighway

Inspection of Wooden Poles

Free Climbing vs. Safer Climbing

Safety Culture Success

Inspecting, Cleaning and Storing Live-Line Tools

Arc Flash – Are You in Compliance?

Human Performance

Training Second Point of Contact

Preventing Underground Damage

Keeping Things Safe in the Field and the Office

Winter Safety Vehicle Checklist

Strategies for Safety in the Wind Industry

What’s in a Number?

How to Choose and Use Ergonomic Hand Tools

Meeting the Challenge

Machine Safety

What You Need to Know About Substations

Moving from Operations into Safety or Training

Distribution Dispatcher or System Operator?

High Visibility and Arc Ratings for Flame Resistance

Stuck in the Mud

Aerial Rescue

Going With the Wind

Incident Analysis

Hidden Traps of Generator Use and Backfeed

Making the Right Choice

Soil Resistivity Testing & Grounding System Design: Part I of II

Succession Syndrome

Making Safety a Core Value

Floodwater Hazards and Precautions

Know the Signs and Symptoms of Heat-Related Illnesses

Huge Steps

Seamless and Compliant

Soil Resistivity Testing & Grounding System Design: Part II of II

Aerial Lifts

How Good Are Your Tailgates?

Root Cause Analysis

Maturity Matters

What Do We Do About Arc Hazard?

NESC-2012-Part 4: Summary of Change Proposals

A FULL Commitment

Arc Suppression Blanket Installation

What Does NFPA 70E Mean To You?

How Safe Are Your Ground Grids?

Introducing a New Certification Program for Utility Safety Professionals

Confused About Arc Flash Compliance?

Analyzing Safety and Hazards on the Job

Error-Free Performance

People Focused Safety

No Substitute

Error-Free Performance: Part II

Heard It Through the Grapevine

Best Practices

Line of Fire

Is Your Company Ready for the Next Disaster?

Preventing Employee Exposure to Pesticides

Compressed Gas Cylinder Safety

LOTO vs. Switching and Tagging

Are You on Cruise Control?

Solid Footing

Hand Protection

Crane & Derrick Compliance

Mind Control: Distractions, Stress and Your Ability to Work Safely

Rubber Insulating Line Hose

Procedure for Reducing Injuries

Huskie Tools Opens New Fiberglass Restoration Division

A92.2: The 2009 Standard

Vehicle Operation Winter Readiness

ATV Safety Begins with Proper Training

Innovate or Follow: The Argument Against A Best Practice

Northeast Utilities Takes Safety Off-Road

High-Pressure Hydraulic Injection Injuries

100 Percent Fall Protection: A Joint Union-Management Effort

Crew Foreman Needed: Who Do We Pick?

Behavior Safety: A Safety Program’s Missing Link

Challenges & Successes

Drop Zone Management: Expanding Our View of Line of Fire

Taking Stock of Your Fall Protection Compliance

Live-Line Tool Use and Care

Employee Training: How Hard Can It Be?

Supervisory Skills for Crew Leaders

Equipment: Back to Basics

A Second Look at Safety Glasses

Competition for a Cause

Human Behavior and Communication Skills for Crew Leaders

Cultivating a Mature Workforce

What’s Your Seat Belt IQ?

Substation Safety

No-Voltage Testing

Five PPE Safety Challenges

Safety Circuitry: The Power in the Brain

Arc Flash Exposure Revisited: NESC 2012 Part 4 Update

T&D Best Practices for Crew Leaders

CUSP Basics: Introduction to Human Performance Principles

Felling of Trees Near Power Lines

Working in Winter

Back to the Basics: PPE 101

Hearing Conservation: An Interesting Challenge

T&D Safety Management for Crew Leaders

Basic Qualifications of Employees

FR Layering Techniques

Safety Rules and Work Practices: Why Don’t They Match Up?

Effective Customer Relationships for Crew Leaders

The Value of Safety Certification

Safety Leadership in a Written Pre-Job Briefing

Communication: The Key to Great Safety

Safe Use of Portable Electric Tools, Cords and Generators

Keys to Effective Fall Protection

Integrity and Respect: Two of Our Most Important Tools

The Intersect: A Practical Guide to Work-Site Hazard Analysis

Strategic Safety Partners

Behavior Safety Training for Safety Committee Members

Combating Overuse and Overexertion Injuries

Safe Digging – Get the 411 on 811

Apprenticeship Training

How S.A.F.E.T.Y. Brought Bluebonnet Through the Fires

Formal vs. On-the-Job Training

That’s What I Meant to Say: Safety Leadership in Communication

The Value of Personal Protective Equipment

Safety and Human Performance: You Can’t Have One Without the Other

Oh, No! Changes in the Workplace

Performance Improvement: Barriers to Events

Train the Trainer 101: Ferroresonance Explained

Voice of Experience: Safety Excellence Equals Operational Excellence

A Mirror: Your Most Important PPE

Care of Portable Ladders

Voice of Experience: FMCSR Compliance: Driver Qualification Files

Train the Trainer 101: Enclosed Space Rescue

Keys to Evaluating and Comparing Arc-Rated and Flame-Resistant Fabrics

Raising the Bar, Lowering the EMR

How Six Sigma Can Improve Your Safety Performance

Detecting Shock Hazards at Transmission Line Work Sites

Care and Maintenance of Climbers

Voice of Experience: Are You Ready for the Big Storm?

Train the Trainer 101: Working from Crane-Mounted Baskets

Learning Leadership: The Leadership Paradigm Shift

Are You Prepared for the Next Generation of Lineworkers?

Implementing a Zero Injury Program

Public Safety and Our First Responders

Managing Cold Stress

Live-Line Work on the Jersey Shore

Soil Classification and Excavation Safety

Voice of Experience: The Definition of Personal Protective Equipment

Learning Leadership: Leadership Skill Set 1: Self-Awareness

Evaluating Crew Supervisors

Train the Trainer 101: Arc Hazard Protection

NESC and ANSI Z535 Safety Sign Standards for Electric Utility Power Plants and Substations

Working Safely with Chain Saws

The Globally Harmonized System for Classifying and Labeling Chemicals

Voice of Experience: The Cost of Business

Train the Trainer 101: Understanding Grounding for the Protection of All Employees

Learning Leadership: Leadership Skill Set 2: Self-Regulation

Occupational Dog Bite Prevention & Safety

Safety Awareness for Substations

Bighorn Sheep vs. Lineworkers: What’s the Difference?

OSHA Job Briefing Basics

Voice of Experience: Training for the Qualified Employee

Train the Trainer 101: ASTM F855 Grounding Equipment Specs Made Simple

Foundation Drilling Safety: The Aldridge Electric Story of Success

The Authority to Stop Work

Starting From the Ground Up

Understanding Step and Touch Potential

Multitasking vs. Switch-Tasking: What’s the Difference?

Voice of Experience: Incidents and the Failure to Control Work

Train the Trainer 101: Live-Line Tool Maintenance Program

Passing the CUSP Exam

Learning Leadership: Leadership Skill Set 4: Social Awareness

Ergonomics for Lineworkers

Are Your Temporary Protective Grounds Really Protecting You?

Voice of Experience: Working On or Near Exposed Energized Parts

Train the Trainer 101: Why You Need More than 1910 and 1926

Transitioning to FR Clothing

Leadership Skill Set 5: Social Persuasion

Safety Management During Change

Spice It Up!

The Singing Lineman

Emergency Action Plans for Remote Locations

Trenching and Excavations: Considerations for the Competent Person

Traffic Safety for Lineworkers

Using Best Practices to Drive Safety Culture

Voice of Experience: The Globally Harmonized System is Here

Train the Trainer 101: Grounding Trucks and Mobile Equipment

The Power of an Effective Field Observation Program

What OSHA’s Proposed Silica Rule Means to You

2013 USOLN Safety Award Winners Announced

Learning Leadership: Personal Protective Emotional Armor: Part 1

Electrical Capacitors in AC Circuits

Improving Safety Through Communication

The Benefits of The CUSP Credential

Voice of Experience: Why Did I Do That?

Train the Trainer 101: Practical Elements for Developing a Safety Culture

Learning Leadership: Personal Protective Emotional Armor: Part 2

Fact-Finding Techniques for Incident Investigations

Electrical Safety for Utility Generation Operations Personnel: A Practical Approach

Addressing Comfort and Contamination in Arc-Rated Clothing

Are You Your Brother’s Keeper?

2013 iP Safety Awards

A Key to Safety Performance Improvement

Salt River Project: Devoted to Safety Excellence

Train the Trainer 101: Safety Incentive Programs

Voice of Experience: OSHA 300 Record-Keeping Rules

Understanding and Influencing the ‘Bulletproof’ Employee

Sustaining Safety Successes

Accident Analysis Using the Multi-Employer Citation Policy

PPE: Much More Than Basic or General Protection

Voice of Experience: Understanding Enclosed and Confined Spaces

Train the Trainer 101: OSHA Forklift Certification Requirements

June 2014 Q&A

Injury Prevention Through Leadership, Employee Engagement and Analytics

NFPA 70E Arc Flash Protection for Nonexempt Industry Workers

The Final Rule

Distributed Generation Safety for Lineworkers

The Perils of Distracted Driving

August 2014 Q&A

Voice of Experience: OSHA Eye and Face Protection Standards

Train the Trainer 101: Fall Protection and the New Rule

Responding to Pole Fires

SRP Rope Access Program Addresses Towers of Power

Elements of an Effective Safety Committee

Mitigating the Risks of Aerial Patrols

Job Briefing for One

Culture Eats Programs for Breakfast

October 2014 Q&A

Voice of Experience: Flame-Resistant Apparel is Now PPE

Train the Trainer 101: Stringing in Energized Environments

The Risks and Rules of Chainsaw Operation

Behavior-Based Safety: What’s the Verdict?

Photovoltaic Solar Safety Management for Utilities

Drones and the Future of Tower Safety

Storytelling as a Management Tool

Safety and Common Sense

Snubbing to Steel Lattice Structures: Lessons Learned

February 2015 Management Toolbox

February 2015 Q&A

Voice of Experience: The Importance of Job Briefings

Train the Trainer 101: Addressing Anchorages

Recent PPE Changes and 2015 Trends

Growing a Human Performance Culture

Measuring, Planning and Cutting Methods for Chainsaw Operators

The Importance of Matching Evidence Marks in Accident Investigations

Safe By a Nose

Overhead Utility Hazards: Look Up and Live

April 2015 Management Toolbox

April 2015 Q&A

Voice of Experience: OSHA Updates to Arc-Rated FR Clothing Requirements

Train the Trainer 101: The OSHA-EEI Subpart V Settlement

The Safety Side Effect: How Good Supervisors Coincidentally Improve Safety

Facing Unique Challenges

The Roller-Coaster Life Cycle of IEEE 1307

The Power of Human Intuition

Thirty Years of Personal Perspective

The Most Important Tool on the Job Site

June 2015 Management Toolbox

June 2015 Q&A

Voice of Experience: Fundamentals of Underground Padmount Transformers

Train the Trainer 101: Back to Basics: ‘Gentlemen, This is a Football’

Arrive Alive

How to Navigate the FR Clothing Marketplace

Making the Switch

Understanding OSHA Electric Power Training Requirements

Distribution Switching Safety

Human Performance and a Rat Trap

August 2015 Management Toolbox

August 2015 Q&A

Voice of Experience: Power Generation Safety and the OSHA Update

Stringing Best Practices: Mesh Grips vs. Preforms

Understanding Safety Culture Through Perception Surveys

RF Safety for Utility Workers

2015 USOLN Safety Award Winners Announced

Train the Trainer 101: Practical Underground Safety: Handling Neutrals and Rescue

Voice of Experience: PPE Regulatory and Consensus Standard Requirements

December 2015 Q&A

December 2015 Management Toolbox

The 911 Dilemma

Spotters: A Critical Element of Site Safety

Coping With Industry Changes

The Safety Coaching Observation Process

Fundamentals of Substation Rescue Plans

Recruiting and Training the Next Generation

Shifting Your Organizational Safety Culture

Investigating Industrial Hygiene at Salt River Project

Train the Trainer 101: Practical MAD and Arc Flash Protection

Voice of Experience: Clearing Up Confusion About 1910.269

October 2015 Q&A

October 2015 Management Toolbox

N95 Filtering Face Pieces: Where Does Your Organization Stand?

Stepping Up Steel Safety Education

Rigging Fundamentals for Utilities

Arc Flash Mitigating Technologies and the OSHA Final Rule

Train the Trainer 101: Practical Personal Protective Grounding

OSHA and the Host-Contractor Relationship