Skip to main content

LOOKING FOR SOMETHING?

December 2014 Q&A

Written by Jim Vaughn, CUSP on . Posted in , , .

Q: In regard to work boots and arc flash protection, what does OSHA mean by “heavy-duty work shoes or boots” in 29 CFR 1910.269(l)(8)(v)(B)? Are boots made of synthetic material acceptable if they are work boots?

A: As with all OSHA rules, it is up to the employer to understand the risks and the necessary protections. In many cases the consensus standards give guidance that can be used to satisfy the OSHA standard. Even though NFPA 70E exempts utilities, OSHA has clearly used the NFPA as a source of material to assist utility employers in protecting employees, and the clothing standards in 70E may be a good place to start. NFPA 70E is not an adopted standard, but as OSHA stated in an October 18, 2006, letter to Michael C. Botts (see www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=interpretations&p_id=25540), “A national consensus standard … can sometimes be relevant to a general duty clause citation in the sense that the consensus standard may be used as evidence of hazard recognition and the availability of feasible means of abatement.” In Table (C)(10), NFPA 70E requires leather boots as needed.

As to OSHA requirements for protection against arc flash injury, the OSHA standard – as you point out – requires heavy-duty work boots or shoes. But here is something to consider: The OSHA standard prohibits materials that will continue to burn, which covers synthetic materials. The question to ask is, if a worker’s feet are exposed to arc flash, would the material that the boot or shoe is made of ignite and continue to burn? If so, it would likely be prohibited.

Another worthy point is that the requirement for use of arc-rated clothing is based on an assessment of the work exposure. If there is no reasonable likelihood that the feet are exposed, then there is no requirement for arc protection for the feet. If there is a likelihood of exposure – the vents at the bottom of enclosed switches come to mind – foot protection is required. Here is another issue to think about: If a forceful arc pressure flowing from vents or gaps under a switch door at ground level could burn a worker’s feet, you should also consider the chimney effect that might be created by the opening at the bottom of the pant leg. It’s one incident, but I am aware of an arc flash that rose up under a worker’s cuffs and severely burned his legs as the arc heat was trapped in his arc-rated pants.

Q: I just read “Train the Trainer 101: Stringing in Energized Environments” in the October 2014 issue of Incident Prevention, which discussed grounding while pulling conductor under tension. Did the article suggest not grounding the first and last structure with traveler grounding studded stringing blocks?

A: Thanks for the question. We are always interested in hearing from readers about the content of iP magazine, especially if readers are concerned that we made an error or may have been unclear about an issue.

To answer your question, no, we are not making such a recommendation. In fact, most iP subject matter experts would agree that the former rules regarding placement of traveling grounds are still a best practice. In the article, we only referred to the language OSHA removed from the rules that previously did designate the location of the pulling grounds and why they might have done so. A grounded traveler at the break-overs, or one span away as we do, is still the best practice for protection of personnel. As we often mention, the industry consensus standards are where employers might go to find procedures that will meet OSHA rules, and in this case we went to IEEE 524, “IEEE Guide to the Installation of Overhead Transmission Line Conductors.” IEEE 524 standardizes a grounded traveler at both break-overs with running grounds at the tensioner as well as puller if it is using steel rope.

There is an issue about how to ground, especially in distribution. For those XCP-100-size stringing blocks typically required for distribution wire stringing, we do not know of a manufacturer that makes a fault-rated grounding traveler. However, blocks with adaptor studs installed for attaching a ground will help shed current in a fault and also will help to trip a breaker even though the traveler itself won’t be much good after the event.

As to induction, if it’s high, those stud-grounded travelers are not current rated and can heat up or arc in the axle pins under steady-state currents, which can also damage or seize up a traveler and may scar wire. When protecting for any pull in an energized environment, guard structures and grounding at the crossings are important. Cover-up alone can be risky if you are depending on cover to protect your running conductors from contact. If during the pull the running conductor sags onto those covers, it will roll rubber hose and plastics right off the energized line, and pretty quickly, too.

Q: Would there ever be a time when federal or state OSHA would require a contract lineworker to wear a breakaway high-visibility safety vest?

If we recall correctly, the idea of a tear-away vest was created for highway workers who use rotating cutting tools, drills, signpost augers and related items. The idea is that a loose-fitting vest could get caught in a power tool, pulling a worker into the tool and causing injury. Obviously, loose-fitting clothes could do the same, but that’s why many safety rules require that power-tool users tuck in their shirts. Likewise, with the advent of Type III vests, they got longer and looser to meet the square-inch requirements of reflective material. Tucking in a vest hides the square inches of material required to be visible, so tear-away was invented.

Unless there is state criteria requiring tear-away, the requirement would be at the employer’s discretion after performing a hazard analysis. If there is no risk of a vest creating a hazard as previously described, there is no reason to have a tear-away version.

As to federal OSHA, it’s the same. Tear-away may be a solution if a hazard analysis identifies the risk as previously described, but there is no rule requiring tear-away. In fact, OSHA has no specific rule on traffic safety vests, but that does not mean they don’t have an opinion. In a 2009 Trade News Release, OSHA issued an opinion that traffic vests are required under the General Duty Clause to protect employees in highway construction zones since the hazard of moving traffic and construction equipment is well documented, and that high-visibility clothing is a recognized method of reducing risks to those workers. It is a short hop to all construction sites from highway construction sites. The hazard of moving equipment in a substation or power line right-of-way is just as real, so OSHA’s opinion extends there as well.

Users need to be aware that the fire-resistant rating on a typical traffic vest is not an arc rating. A traffic safety vest exposed to an arc will melt. Electrical workers exposed to traffic and arcs should either wear high-visibility arc-protective wear that meets the contract and nighttime reflectivity standards or arc-rated traffic vests.

Q: I don’t agree with Incident Prevention’s contention in the October 2014 issue’s Q&A that it is OK to connect two snaphooks into one D-ring. My understanding of the rule is that OSHA does not allow snaphooks on a single D-ring unless (1) the snaphook is a locking type and (2) the snaphook is specifically designed for certain connections, one being to a D-ring to which another snaphook or other connector is attached.

A: You are not the only reader with that opinion and we acknowledge that without issue. iP’s intent is to educate readers and make safety understandable. We provide guidance toward interpretation and cite what we best identify as the resources toward interpretation of the standards and practical workplace safety. The interpretation regarding two snaphooks in one D-ring hinges on what employers interpret as – and what OSHA accepts as – “specifically designed,” which you cited in your question.

We refer you to the original issue and reasoning for prohibiting two snaps that were discussed in the preamble to the original rule (see Federal Register Vol. 79, No. 70, pages 20392-20404). That reasoning was valid because without locking snaps, the two snaps are considered unsafe due to the potential for accidental disengagement of the snaphooks during use. Snaps are now specifically designed not to be able to be accidentally disengaged or to inadvertently open another snap in the same D-ring.

We examined literature from several manufacturers and see their fall protection and secondary lanyards listed as compatible with their two-D-ring belts. We have seen video and instruction from manufacturers using secondary lanyards on both two- and four-D-ring belts. In addition, top executives from both Buckingham Manufacturing Co. and Jelco have confirmed to iP that they have no prohibitions against users attaching locking-type snaphooks in a single D-ring. We have a letter from Buckingham that approves two locking snaps in a single D-ring, and anyone who would like to review the letter is welcome to request a copy from iP. We also direct you to the user literature from Buckingham that states that “unless you are using locking snaphooks, never attach multiple snaphooks to a D-ring.” We don’t know how that statement cannot be interpreted as permission, but many people still call Buckingham to ask if it is OK. At present, Buckingham’s answer is yes, it is OK. Obviously, Buckingham is always free to change their instruction just like an employer is free to use a four-D-ring belt, and Buckingham – which was the first in this industry to offer a four-ring body belt as a convenience to park the unused secondary safety – as well as any other manufacturer will gladly sell you one.

Finally, two-snap compatibility is a widely discussed issue and we support any questions that affect safety. However, there seems to be a lot of attention paid to this one rule but none to the rule immediately preceding it. Rule 1926.502(d)(5) states that snaphooks shall be sized to be compatible with the member to which they are connected to prevent unintentional disengagement of the snaphook by depression of the snaphook keeper by the connected member, yet no one calls the manufacturer or asks for a statement of compatibility, even when they mix manufacturer safeties, belts and fall protection devices. Our contention is still that it is not prohibited by the standard under these conditions, but again, our intent is to educate the reader toward interpretation and practical safety. We invite reader opinions on the issue, and if we learn that OSHA ever directly states that two locking snaps in a D-ring is not an allowable practice, we will be the first to say so.

Do you have a question regarding best practices, work procedures or other utility safety-related topics? If so, please send your inquiries directly to kate@incident-prevention.com. Questions submitted are reviewed and answered by the iP editorial advisory board and other subject matter experts.

IP ARTICLE VAULT 2004 - 2015

Human Performance Tools: Important or Critical?

2014 USOLN Safety Award Winners Announced

Arc Flash and the Benefits of Wearing PPE

Closing the Safety Gap

Chainsaw Safety, Planning and Precision Felling Techniques

Train the Trainer 101: Substation Entry Policies

Voice of Experience: How Does the Employer Ensure and Demonstrate?

December 2014 Q&A

December 2014 Management Toolbox

Lessons Learned, Successful Implementation of Behavioral Safety Coaching

The Pain Game: Preventing MSDs

Eliminating Excuses

Training for the New Century

Fall Protection by the Numbers

Injury Free Change

What It Takes to be a Safety and Compliance Leader

Why Single-Point Grounding Works

The Burning Question

Notes From the Underground

Leadership Influencing the Culture

Ergonomics: Preventing Injury

Taking Safety to the Next Level

4 Rules to Live By

Frostbite

A Friend in Need at Indiana Rural Electric Coops

Cleaning Rubber Goods for Safety

Lowering the Threshold

CAVE-IN! Increasing Job Site Safety & Reducing Costs

Keeping the ‘Fighter Pilots’ of Your Company Safe

Safety Comes First at SM Electric

Dramatic Results

Focusing on Safety at Comcast

When is a Lineman a Lineman?

Making Sure Everyone Goes Home Safe at Southern California Edison

Stay Alert! Work Safe!

Everyone Benefits at Charter Communications

Dissecting an OSHA Inspection

Top Five PPE Mistakes

Ultimate Protection

Learning Curve

Total Success at Dominion

NESC-2007 Update

Making Safe Choices

Tips for Improving Incident Investigation Interviews – Part 1: Preparation

The Key to Safety at KCP&L

Digging Out – The Interagency Snow Rescue Task Force

LockOut TagOut

Tips for Improving Incident Investigation Interviews- Part 2: Contact Time

Dreams Can Become Reality: SDG&E Flex Center

Bridging Communication Gaps

Equipotential Grounding at AEP

Training Development

Focusing on a Safety Culture at Consumers Energy

Substations: Eliminating the Dangers Within

Ensuring Safety at Grand Bahama Power

Perfect Storm – The Case for AED’s

Embracing Change: Think Human Performance

NESC 2007 FLAME RESISTANT CLOTHING

Managing Safety Rule Violations

Passion for Safety

How to Bulletproof Your Training

Tower Rescue Pre-planning Pays Off

Managing Safety

Effective Fall Protection for Utility Workers

Safety Information Superhighway

Inspection of Wooden Poles

Free Climbing vs. Safer Climbing

Safety Culture Success

Inspecting, Cleaning and Storing Live-Line Tools

Arc Flash – Are You in Compliance?

Human Performance

Training Second Point of Contact

Preventing Underground Damage

Keeping Things Safe in the Field and the Office

Winter Safety Vehicle Checklist

Strategies for Safety in the Wind Industry

What’s in a Number?

How to Choose and Use Ergonomic Hand Tools

Meeting the Challenge

Machine Safety

What You Need to Know About Substations

Moving from Operations into Safety or Training

Distribution Dispatcher or System Operator?

High Visibility and Arc Ratings for Flame Resistance

Stuck in the Mud

Aerial Rescue

Going With the Wind

Incident Analysis

Hidden Traps of Generator Use and Backfeed

Making the Right Choice

Soil Resistivity Testing & Grounding System Design: Part I of II

Succession Syndrome

Making Safety a Core Value

Floodwater Hazards and Precautions

Know the Signs and Symptoms of Heat-Related Illnesses

Huge Steps

Seamless and Compliant

Soil Resistivity Testing & Grounding System Design: Part II of II

Aerial Lifts

How Good Are Your Tailgates?

Root Cause Analysis

Maturity Matters

What Do We Do About Arc Hazard?

NESC-2012-Part 4: Summary of Change Proposals

A FULL Commitment

Arc Suppression Blanket Installation

What Does NFPA 70E Mean To You?

How Safe Are Your Ground Grids?

Introducing a New Certification Program for Utility Safety Professionals

Confused About Arc Flash Compliance?

Analyzing Safety and Hazards on the Job

Error-Free Performance

People Focused Safety

No Substitute

Error-Free Performance: Part II

Heard It Through the Grapevine

Best Practices

Line of Fire

Is Your Company Ready for the Next Disaster?

Preventing Employee Exposure to Pesticides

Compressed Gas Cylinder Safety

LOTO vs. Switching and Tagging

Are You on Cruise Control?

Solid Footing

Hand Protection

Crane & Derrick Compliance

Mind Control: Distractions, Stress and Your Ability to Work Safely

Rubber Insulating Line Hose

Procedure for Reducing Injuries

Huskie Tools Opens New Fiberglass Restoration Division

A92.2: The 2009 Standard

Vehicle Operation Winter Readiness

ATV Safety Begins with Proper Training

Innovate or Follow: The Argument Against A Best Practice

Northeast Utilities Takes Safety Off-Road

High-Pressure Hydraulic Injection Injuries

100 Percent Fall Protection: A Joint Union-Management Effort

Crew Foreman Needed: Who Do We Pick?

Behavior Safety: A Safety Program’s Missing Link

Challenges & Successes

Drop Zone Management: Expanding Our View of Line of Fire

Taking Stock of Your Fall Protection Compliance

Live-Line Tool Use and Care

Employee Training: How Hard Can It Be?

Supervisory Skills for Crew Leaders

Equipment: Back to Basics

A Second Look at Safety Glasses

Competition for a Cause

Human Behavior and Communication Skills for Crew Leaders

Cultivating a Mature Workforce

What’s Your Seat Belt IQ?

Substation Safety

No-Voltage Testing

Five PPE Safety Challenges

Safety Circuitry: The Power in the Brain

Arc Flash Exposure Revisited: NESC 2012 Part 4 Update

T&D Best Practices for Crew Leaders

CUSP Basics: Introduction to Human Performance Principles

Felling of Trees Near Power Lines

Working in Winter

Back to the Basics: PPE 101

Hearing Conservation: An Interesting Challenge

T&D Safety Management for Crew Leaders

Basic Qualifications of Employees

FR Layering Techniques

Safety Rules and Work Practices: Why Don’t They Match Up?

Effective Customer Relationships for Crew Leaders

The Value of Safety Certification

Safety Leadership in a Written Pre-Job Briefing

Communication: The Key to Great Safety

Safe Use of Portable Electric Tools, Cords and Generators

Keys to Effective Fall Protection

Integrity and Respect: Two of Our Most Important Tools

The Intersect: A Practical Guide to Work-Site Hazard Analysis

Strategic Safety Partners

Behavior Safety Training for Safety Committee Members

Combating Overuse and Overexertion Injuries

Safe Digging – Get the 411 on 811

Apprenticeship Training

How S.A.F.E.T.Y. Brought Bluebonnet Through the Fires

Formal vs. On-the-Job Training

That’s What I Meant to Say: Safety Leadership in Communication

The Value of Personal Protective Equipment

Safety and Human Performance: You Can’t Have One Without the Other

Oh, No! Changes in the Workplace

Performance Improvement: Barriers to Events

Train the Trainer 101: Ferroresonance Explained

Voice of Experience: Safety Excellence Equals Operational Excellence

A Mirror: Your Most Important PPE

Care of Portable Ladders

Voice of Experience: FMCSR Compliance: Driver Qualification Files

Train the Trainer 101: Enclosed Space Rescue

Keys to Evaluating and Comparing Arc-Rated and Flame-Resistant Fabrics

Raising the Bar, Lowering the EMR

How Six Sigma Can Improve Your Safety Performance

Detecting Shock Hazards at Transmission Line Work Sites

Care and Maintenance of Climbers

Voice of Experience: Are You Ready for the Big Storm?

Train the Trainer 101: Working from Crane-Mounted Baskets

Learning Leadership: The Leadership Paradigm Shift

Are You Prepared for the Next Generation of Lineworkers?

Implementing a Zero Injury Program

Public Safety and Our First Responders

Managing Cold Stress

Live-Line Work on the Jersey Shore

Soil Classification and Excavation Safety

Voice of Experience: The Definition of Personal Protective Equipment

Learning Leadership: Leadership Skill Set 1: Self-Awareness

Evaluating Crew Supervisors

Train the Trainer 101: Arc Hazard Protection

NESC and ANSI Z535 Safety Sign Standards for Electric Utility Power Plants and Substations

Working Safely with Chain Saws

The Globally Harmonized System for Classifying and Labeling Chemicals

Voice of Experience: The Cost of Business

Train the Trainer 101: Understanding Grounding for the Protection of All Employees

Learning Leadership: Leadership Skill Set 2: Self-Regulation

Occupational Dog Bite Prevention & Safety

Safety Awareness for Substations

Bighorn Sheep vs. Lineworkers: What’s the Difference?

OSHA Job Briefing Basics

Voice of Experience: Training for the Qualified Employee

Train the Trainer 101: ASTM F855 Grounding Equipment Specs Made Simple

Foundation Drilling Safety: The Aldridge Electric Story of Success

The Authority to Stop Work

Starting From the Ground Up

Understanding Step and Touch Potential

Multitasking vs. Switch-Tasking: What’s the Difference?

Voice of Experience: Incidents and the Failure to Control Work

Train the Trainer 101: Live-Line Tool Maintenance Program

Passing the CUSP Exam

Learning Leadership: Leadership Skill Set 4: Social Awareness

Ergonomics for Lineworkers

Are Your Temporary Protective Grounds Really Protecting You?

Voice of Experience: Working On or Near Exposed Energized Parts

Train the Trainer 101: Why You Need More than 1910 and 1926

Transitioning to FR Clothing

Leadership Skill Set 5: Social Persuasion

Safety Management During Change

Spice It Up!

The Singing Lineman

Emergency Action Plans for Remote Locations

Trenching and Excavations: Considerations for the Competent Person

Traffic Safety for Lineworkers

Using Best Practices to Drive Safety Culture

Voice of Experience: The Globally Harmonized System is Here

Train the Trainer 101: Grounding Trucks and Mobile Equipment

The Power of an Effective Field Observation Program

What OSHA’s Proposed Silica Rule Means to You

2013 USOLN Safety Award Winners Announced

Learning Leadership: Personal Protective Emotional Armor: Part 1

Electrical Capacitors in AC Circuits

Improving Safety Through Communication

The Benefits of The CUSP Credential

Voice of Experience: Why Did I Do That?

Train the Trainer 101: Practical Elements for Developing a Safety Culture

Learning Leadership: Personal Protective Emotional Armor: Part 2

Fact-Finding Techniques for Incident Investigations

Electrical Safety for Utility Generation Operations Personnel: A Practical Approach

Addressing Comfort and Contamination in Arc-Rated Clothing

Are You Your Brother’s Keeper?

2013 iP Safety Awards

A Key to Safety Performance Improvement

Salt River Project: Devoted to Safety Excellence

Train the Trainer 101: Safety Incentive Programs

Voice of Experience: OSHA 300 Record-Keeping Rules

Understanding and Influencing the ‘Bulletproof’ Employee

Sustaining Safety Successes

Accident Analysis Using the Multi-Employer Citation Policy

PPE: Much More Than Basic or General Protection

Voice of Experience: Understanding Enclosed and Confined Spaces

Train the Trainer 101: OSHA Forklift Certification Requirements

June 2014 Q&A

Injury Prevention Through Leadership, Employee Engagement and Analytics

NFPA 70E Arc Flash Protection for Nonexempt Industry Workers

The Final Rule

Distributed Generation Safety for Lineworkers

The Perils of Distracted Driving

August 2014 Q&A

Voice of Experience: OSHA Eye and Face Protection Standards

Train the Trainer 101: Fall Protection and the New Rule

Responding to Pole Fires

SRP Rope Access Program Addresses Towers of Power

Elements of an Effective Safety Committee

Mitigating the Risks of Aerial Patrols

Job Briefing for One

Culture Eats Programs for Breakfast

October 2014 Q&A

Voice of Experience: Flame-Resistant Apparel is Now PPE

Train the Trainer 101: Stringing in Energized Environments

The Risks and Rules of Chainsaw Operation

Behavior-Based Safety: What’s the Verdict?

Photovoltaic Solar Safety Management for Utilities

Drones and the Future of Tower Safety

Storytelling as a Management Tool

Safety and Common Sense

Snubbing to Steel Lattice Structures: Lessons Learned

February 2015 Management Toolbox

February 2015 Q&A

Voice of Experience: The Importance of Job Briefings

Train the Trainer 101: Addressing Anchorages

Recent PPE Changes and 2015 Trends

Growing a Human Performance Culture

Measuring, Planning and Cutting Methods for Chainsaw Operators

The Importance of Matching Evidence Marks in Accident Investigations

Safe By a Nose

Overhead Utility Hazards: Look Up and Live

April 2015 Management Toolbox

April 2015 Q&A

Voice of Experience: OSHA Updates to Arc-Rated FR Clothing Requirements

Train the Trainer 101: The OSHA-EEI Subpart V Settlement

The Safety Side Effect: How Good Supervisors Coincidentally Improve Safety

Facing Unique Challenges

The Roller-Coaster Life Cycle of IEEE 1307

The Power of Human Intuition

Thirty Years of Personal Perspective

The Most Important Tool on the Job Site

June 2015 Management Toolbox

June 2015 Q&A

Voice of Experience: Fundamentals of Underground Padmount Transformers

Train the Trainer 101: Back to Basics: ‘Gentlemen, This is a Football’

Arrive Alive

How to Navigate the FR Clothing Marketplace

Making the Switch

Understanding OSHA Electric Power Training Requirements

Distribution Switching Safety

Human Performance and a Rat Trap

August 2015 Management Toolbox

August 2015 Q&A

Voice of Experience: Power Generation Safety and the OSHA Update

Stringing Best Practices: Mesh Grips vs. Preforms

Understanding Safety Culture Through Perception Surveys

RF Safety for Utility Workers

2015 USOLN Safety Award Winners Announced

Train the Trainer 101: Practical Underground Safety: Handling Neutrals and Rescue

Voice of Experience: PPE Regulatory and Consensus Standard Requirements

December 2015 Q&A

December 2015 Management Toolbox

The 911 Dilemma

Spotters: A Critical Element of Site Safety

Coping With Industry Changes

The Safety Coaching Observation Process

Fundamentals of Substation Rescue Plans

Recruiting and Training the Next Generation

Shifting Your Organizational Safety Culture

Investigating Industrial Hygiene at Salt River Project

Train the Trainer 101: Practical MAD and Arc Flash Protection

Voice of Experience: Clearing Up Confusion About 1910.269

October 2015 Q&A

October 2015 Management Toolbox

N95 Filtering Face Pieces: Where Does Your Organization Stand?

Stepping Up Steel Safety Education

Rigging Fundamentals for Utilities

Arc Flash Mitigating Technologies and the OSHA Final Rule

Train the Trainer 101: Practical Personal Protective Grounding

OSHA and the Host-Contractor Relationship