Skip to main content

LOOKING FOR SOMETHING?

August 2014 Q&A

Written by Jim Vaughn, CUSP on . Posted in , , .

Q: Can a boom truck be used as a manhole rescue device? I’ve heard that OSHA rules prohibit boom truck use because the truck has too much force, resulting in greater harm to the employee in need of rescue.

A: There may be issues with a boom truck as a rescue device, but its use is not prohibited in the situation you mention. Based on the criteria for rescue, however, it’s possible that the use of a boom truck may not be your best option. Incident Prevention does not advocate this method nor any other particular method of rescue from a manhole, but we do make every attempt to give you the information you need to make the right decision.

We often hear that OSHA requires a tripod and winch. That is usually because of the following statement OSHA made regarding manhole rescue in the original 29 CFR 1910.269 preamble: “The equipment must enable a rescuer to remove an injured employee from the enclosed space quickly and without injury to the rescuer or further harm to the fallen employee. A harness, a lifeline, and a self-supporting winch can normally be used in this manner.”

Your question creates an opportunity to better understand OSHA’s role in workplace safety and the methodologies they employ in developing and enforcing standards. While OSHA uses the above preamble example as a method of accomplishing rescue, they never required the tripod and winch as the method to be employed for rescue from a manhole. If you are a regular reader, you know that Incident Prevention endeavors to deliver practical advice toward compliance. With few exceptions, the OSHA rules are a body of performance standards telling us what the employer must accomplish in order for the employer’s workplace to be considered safe, not how the employer must do it. Within those performance rules are the criteria for what must be accomplished.

The issue of using boom truck hoists for rescue has been raised many times. There are obvious risks that don’t invalidate use of a hoist for rescue, but it depends on how you plan to use it and how you plan to mitigate the risks involved. One scenario may be to mount a rescue pulley to a boom tip, or another employer may plan to use the boom to lift an injured employee from a manhole. As pointed out in your question, the power of a hydraulic lift could cause additional injury if an injured employee were to strike the lip of the manhole during extraction. We have seen pulleys mounted on boom tips and capstans mounted on outriggers as the means of extraction. The method of rescue is up to the employer. The employer’s responsibility is clearly defined, including the requirement to practice and identify the issues with the selected method. When asked in the past about using a hook on a boom truck as a fall protection anchorage or as a rescue device, OSHA says it may not meet the requirements of the standard, usually referring to the requirement to do no further harm. If the employer can demonstrate that the risk is controlled, there is no issue.

Incident Prevention’s consultants have observed that tripods and winches are excellent rescue devices, but obviously they may have limitations, especially if there are more than two workers in a hole or if terrain around the manhole precludes setting up a tripod. In the latter case, before you resort to lifting using a boom truck, you may find manhole ring lip-mounted or bumper-mounted rescue booms that will work.

Q: Regarding substation fence signage, some signs in the marketplace read “Danger” while others read “Warning.” What is the proper terminology?

A: The proper terminology for a safety sign is based on the level of risk to the reader of the sign and where they are when they see it. We surveyed several of our editorial advisory board members and other utility safety people, as well as contractors who serve several utilities, and got different answers. Most common were “Danger” signs on fences and “Warning” signs on control room doors. Most of these sign usages are likely based on long-ago determinations of sign applications, and there are a variety of opinions regarding interpretation of the guiding ANSI Z535 standard. However, Incident Prevention has access to Allen L. Clapp, P.E., of Clapp Research, who not only sits on the Incident Prevention editorial advisory board, but also sat on the ANSI sign committee representing IEEE for 20 years and chaired the ANSI Z535.2 standards committee that established current criteria for facilities signs. This was also the beginning of the era when ANSI recognized and applied new research led by Clapp and Electromark that identified fundamental issues and improvements in recognition of sign meaning. Their work proved the greater hazard recognition provided by the new, now mandated rectangle key word and hazard statement signs used today, moving away from the older oval danger signs no longer allowed by the ANSI Z535 standard.

It is important to note here that OSHA standards are generally workplace related for the protection of workers, but OSHA also includes the public in the scope of the accident prevention sign standard. The ANSI sign standard applies to facilities as well as general environments, but is also to be employed to protect workers in the workplace. As with any workplace safety signs, there must be consistency in the signage, and employees must be trained to recognize sign meanings and associated actions no matter how the employer interprets sign application. The public does not get safety sign training. As such, ANSI sign standards are developed based on methodologies designed to trigger positive or protective reactions by members of the general public who see signs.

Both OSHA 1910.145 and ANSI Z535.2 have criteria for sign use. Each standard has slight but not irreconcilable differences. ANSI uses a three-tier sign system while OSHA uses a two-tier system based on the outmoded Z35 safety sign standards that were replaced by the Z535 standards. For ANSI, the differentiation between “Danger” and “Warning” is the space on either side of a line of demarcation such as a fence. A “Danger” sign is required on the side of the fence where the deadly hazard lies. A “Warning” sign is placed at the barrier to warn the reader that there is a hazard beyond the sign that will result in serious injury or death. If conditions could result in minor or moderate injury, a “Caution” sign is required. For OSHA 1910.145(c)(1) and (c)(2), a “Danger” sign is required if the conditions beyond the sign will result in immediate danger. If the conditions could result in potential hazards, or to caution against unsafe practices, a “Caution” sign is required. OSHA has no provision for “Warning” signs. The “Warning” signal word was first required by the 1991 Z535 standards that replaced the 1968 Z35 standard adopted by OSHA in 1972.

Both standards use the same warning colors with respect to the danger words. Red is used for “Danger,” yellow is used for “Caution” and orange is used for “Warning.”

Though the OSHA standard does not contain a provision for “Warning” signs, there is provision following the safety sign section for use of “Warning” tags. Rule 1910.145(f)(7) allows “Warning” tags to be used to represent a hazard level between “Caution” and “Danger,” instead of the required “Caution” tag, provided that they have a signal word of “Warning” and an appropriate major message regarding the hazard. OSHA has adopted ANSI Z535.2 in the adopted standards even though the rule as written in 1910.145 does not specify or even mention the use of a “Warning” safety sign.

Now that we have a better understanding of the rules, the guiding criteria for a substation fence sign is based on protection of the public. Using the ANSI criteria, a “Warning” sign would be appropriate. Inside the station, “Danger” signs are appropriate where workers and any nonauthorized members of the public are at risk. However, anyone climbing transformers or buss support structures, opening a hatch covering energized or rotating parts, or entering a barricaded area would be in the immediate area of the related hazards. As a result, signs at approaches to energized areas behind fence barricades, barriers or hatch covers generally need to use the “Danger” signal word (see NESC Rule 124C3) inside the station.

For more information about safety signs, see “NESC and ANSI Z535 Safety Sign Standards for Electric Utility Power Plants and Substations” by Allen L. Clapp, P.E., at https://incident-prevention.com/blog/nesc-and-ansi-z535-safety-sign-standards-for-electric-utility-power-plants-and-substations.

Q: ASTM 712 says phase-to-phase rating only applies if both phases are covered. How does that apply to cover-up when a worker is positioned between phases? For example, the circuit is 7,200/12,470 volts. Would a Class 3 plastic cover-up – maximum use 15.3 kV phase to ground – be adequate for use if only one phase is covered?

A: According to the table and notes for ASTM F712.4, Class 3 plastic is rated 26.4 guarded phase to guarded phase and 15.3 kV guarded phase to ground. The answer to your second question is a definite maybe. It depends on several things, the most important of which might be practices employed by workers.

Look closely at the language of the 712 standard. First, 712 is a manufacturing standard. Paragraphs 1.3 to 1.5 read, “It is common practice for the user of this equipment to prepare instructions for the correct use and maintenance. The use and maintenance of this equipment is beyond the scope of these test methods. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.”

Now let’s look at the notes to the 712 test tables. Plastic guards are tested phase to ground. In Table 1 and 2, the withstand and flashover tests, ASTM states that withstand ratings are tested at greater than the maximum phase-to-ground ratings, but they are not rated – meaning tested – for use on one uncovered phase to one guarded phase. Note 1 states, “Plastic guard equipment … is designed to provide a satisfactory safety factor only when used in a phase-to-ground exposure. If exposure is phase-to-phase, then a satisfactory safety factor is only provided if the exposure is covered-phase-to-covered-phase.” In other words, the testing assures a certain safety factor for phase-to-ground application because that is how it is tested.

To understand that, let’s spend a moment discussing safety factors. Plastic goods show a rating for phase to ground and a rating for guarded phase to guarded phase. You will read two numbers on rubber goods, one a maximum voltage use rating, the other the test voltage. For Class 2 rubber, the use rating is 18 kV and the test voltage is 20 kV. That shows a 2000-volt safety factor. Class 4 rubber is tested at 40 kV and use rated at 36 kV, showing a safety factor of 4 kV. There is no differentiation in rubber goods as to whether a voltage rating is phase to phase or phase to ground.

ASTM is explaining the standard practice for testing, not necessarily the practices for use. The application criteria for the employer is found in OSHA 1910.269(l), which simply requires insulated cover to protect employees, and paragraph 7.3.1.13 of IEEE 516, “IEEE Guide for Maintenance Methods on Energized Power Lines,” which states that when working within reach or extended reach, the equipment should be covered with protective cover-up equipment rated for the voltage involved. Neither OSHA nor 516 establishes an application of insulation based on safety factors, only insulation ratings.

As to the original question, in practical use it is common for employers to apply Class 3 plastic rated 15.3 kV guarded phase to ground to 12.4-kV primary as cover between phases if one phase being worked is not covered. An employee positioned between phases is able to reach between the electrical component of both phases, meeting OSHA’s definition of multiphase or phase-to-phase exposure. A Class 4 rubber hose rated for use at 36 kV would be accepted as appropriate for covering one phase while the worker, using appropriate practices and in rubber gloves, is in contact with the uncovered phase. Most experts we talked to agree that a Class 3 plastic rated at 15.3 kV phase to ground would also be acceptable.

This is why we pointed out in the beginning that practices are important. As an industry, we generally forbid any contact with more than one phase at a time, even if they are covered. It is generally accepted, then, that a single covered phase on a 12,470-volt feeder with a plastic, rated at 15.3 kV covered phase to ground, combined with appropriate practice, would be effective protection for the worker.

Do you have a question regarding best practices, work procedures or other utility safety-related topics? If so, please send your inquiries directly to kate@incident-prevention.com. Questions submitted are reviewed and answered by the iP editorial advisory board and other subject matter experts.

IP ARTICLE VAULT 2004 - 2015

Human Performance Tools: Important or Critical?

2014 USOLN Safety Award Winners Announced

Arc Flash and the Benefits of Wearing PPE

Closing the Safety Gap

Chainsaw Safety, Planning and Precision Felling Techniques

Train the Trainer 101: Substation Entry Policies

Voice of Experience: How Does the Employer Ensure and Demonstrate?

December 2014 Q&A

December 2014 Management Toolbox

Lessons Learned, Successful Implementation of Behavioral Safety Coaching

The Pain Game: Preventing MSDs

Eliminating Excuses

Training for the New Century

Fall Protection by the Numbers

Injury Free Change

What It Takes to be a Safety and Compliance Leader

Why Single-Point Grounding Works

The Burning Question

Notes From the Underground

Leadership Influencing the Culture

Ergonomics: Preventing Injury

Taking Safety to the Next Level

4 Rules to Live By

Frostbite

A Friend in Need at Indiana Rural Electric Coops

Cleaning Rubber Goods for Safety

Lowering the Threshold

CAVE-IN! Increasing Job Site Safety & Reducing Costs

Keeping the ‘Fighter Pilots’ of Your Company Safe

Safety Comes First at SM Electric

Dramatic Results

Focusing on Safety at Comcast

When is a Lineman a Lineman?

Making Sure Everyone Goes Home Safe at Southern California Edison

Stay Alert! Work Safe!

Everyone Benefits at Charter Communications

Dissecting an OSHA Inspection

Top Five PPE Mistakes

Ultimate Protection

Learning Curve

Total Success at Dominion

NESC-2007 Update

Making Safe Choices

Tips for Improving Incident Investigation Interviews – Part 1: Preparation

The Key to Safety at KCP&L

Digging Out – The Interagency Snow Rescue Task Force

LockOut TagOut

Tips for Improving Incident Investigation Interviews- Part 2: Contact Time

Dreams Can Become Reality: SDG&E Flex Center

Bridging Communication Gaps

Equipotential Grounding at AEP

Training Development

Focusing on a Safety Culture at Consumers Energy

Substations: Eliminating the Dangers Within

Ensuring Safety at Grand Bahama Power

Perfect Storm – The Case for AED’s

Embracing Change: Think Human Performance

NESC 2007 FLAME RESISTANT CLOTHING

Managing Safety Rule Violations

Passion for Safety

How to Bulletproof Your Training

Tower Rescue Pre-planning Pays Off

Managing Safety

Effective Fall Protection for Utility Workers

Safety Information Superhighway

Inspection of Wooden Poles

Free Climbing vs. Safer Climbing

Safety Culture Success

Inspecting, Cleaning and Storing Live-Line Tools

Arc Flash – Are You in Compliance?

Human Performance

Training Second Point of Contact

Preventing Underground Damage

Keeping Things Safe in the Field and the Office

Winter Safety Vehicle Checklist

Strategies for Safety in the Wind Industry

What’s in a Number?

How to Choose and Use Ergonomic Hand Tools

Meeting the Challenge

Machine Safety

What You Need to Know About Substations

Moving from Operations into Safety or Training

Distribution Dispatcher or System Operator?

High Visibility and Arc Ratings for Flame Resistance

Stuck in the Mud

Aerial Rescue

Going With the Wind

Incident Analysis

Hidden Traps of Generator Use and Backfeed

Making the Right Choice

Soil Resistivity Testing & Grounding System Design: Part I of II

Succession Syndrome

Making Safety a Core Value

Floodwater Hazards and Precautions

Know the Signs and Symptoms of Heat-Related Illnesses

Huge Steps

Seamless and Compliant

Soil Resistivity Testing & Grounding System Design: Part II of II

Aerial Lifts

How Good Are Your Tailgates?

Root Cause Analysis

Maturity Matters

What Do We Do About Arc Hazard?

NESC-2012-Part 4: Summary of Change Proposals

A FULL Commitment

Arc Suppression Blanket Installation

What Does NFPA 70E Mean To You?

How Safe Are Your Ground Grids?

Introducing a New Certification Program for Utility Safety Professionals

Confused About Arc Flash Compliance?

Analyzing Safety and Hazards on the Job

Error-Free Performance

People Focused Safety

No Substitute

Error-Free Performance: Part II

Heard It Through the Grapevine

Best Practices

Line of Fire

Is Your Company Ready for the Next Disaster?

Preventing Employee Exposure to Pesticides

Compressed Gas Cylinder Safety

LOTO vs. Switching and Tagging

Are You on Cruise Control?

Solid Footing

Hand Protection

Crane & Derrick Compliance

Mind Control: Distractions, Stress and Your Ability to Work Safely

Rubber Insulating Line Hose

Procedure for Reducing Injuries

Huskie Tools Opens New Fiberglass Restoration Division

A92.2: The 2009 Standard

Vehicle Operation Winter Readiness

ATV Safety Begins with Proper Training

Innovate or Follow: The Argument Against A Best Practice

Northeast Utilities Takes Safety Off-Road

High-Pressure Hydraulic Injection Injuries

100 Percent Fall Protection: A Joint Union-Management Effort

Crew Foreman Needed: Who Do We Pick?

Behavior Safety: A Safety Program’s Missing Link

Challenges & Successes

Drop Zone Management: Expanding Our View of Line of Fire

Taking Stock of Your Fall Protection Compliance

Live-Line Tool Use and Care

Employee Training: How Hard Can It Be?

Supervisory Skills for Crew Leaders

Equipment: Back to Basics

A Second Look at Safety Glasses

Competition for a Cause

Human Behavior and Communication Skills for Crew Leaders

Cultivating a Mature Workforce

What’s Your Seat Belt IQ?

Substation Safety

No-Voltage Testing

Five PPE Safety Challenges

Safety Circuitry: The Power in the Brain

Arc Flash Exposure Revisited: NESC 2012 Part 4 Update

T&D Best Practices for Crew Leaders

CUSP Basics: Introduction to Human Performance Principles

Felling of Trees Near Power Lines

Working in Winter

Back to the Basics: PPE 101

Hearing Conservation: An Interesting Challenge

T&D Safety Management for Crew Leaders

Basic Qualifications of Employees

FR Layering Techniques

Safety Rules and Work Practices: Why Don’t They Match Up?

Effective Customer Relationships for Crew Leaders

The Value of Safety Certification

Safety Leadership in a Written Pre-Job Briefing

Communication: The Key to Great Safety

Safe Use of Portable Electric Tools, Cords and Generators

Keys to Effective Fall Protection

Integrity and Respect: Two of Our Most Important Tools

The Intersect: A Practical Guide to Work-Site Hazard Analysis

Strategic Safety Partners

Behavior Safety Training for Safety Committee Members

Combating Overuse and Overexertion Injuries

Safe Digging – Get the 411 on 811

Apprenticeship Training

How S.A.F.E.T.Y. Brought Bluebonnet Through the Fires

Formal vs. On-the-Job Training

That’s What I Meant to Say: Safety Leadership in Communication

The Value of Personal Protective Equipment

Safety and Human Performance: You Can’t Have One Without the Other

Oh, No! Changes in the Workplace

Performance Improvement: Barriers to Events

Train the Trainer 101: Ferroresonance Explained

Voice of Experience: Safety Excellence Equals Operational Excellence

A Mirror: Your Most Important PPE

Care of Portable Ladders

Voice of Experience: FMCSR Compliance: Driver Qualification Files

Train the Trainer 101: Enclosed Space Rescue

Keys to Evaluating and Comparing Arc-Rated and Flame-Resistant Fabrics

Raising the Bar, Lowering the EMR

How Six Sigma Can Improve Your Safety Performance

Detecting Shock Hazards at Transmission Line Work Sites

Care and Maintenance of Climbers

Voice of Experience: Are You Ready for the Big Storm?

Train the Trainer 101: Working from Crane-Mounted Baskets

Learning Leadership: The Leadership Paradigm Shift

Are You Prepared for the Next Generation of Lineworkers?

Implementing a Zero Injury Program

Public Safety and Our First Responders

Managing Cold Stress

Live-Line Work on the Jersey Shore

Soil Classification and Excavation Safety

Voice of Experience: The Definition of Personal Protective Equipment

Learning Leadership: Leadership Skill Set 1: Self-Awareness

Evaluating Crew Supervisors

Train the Trainer 101: Arc Hazard Protection

NESC and ANSI Z535 Safety Sign Standards for Electric Utility Power Plants and Substations

Working Safely with Chain Saws

The Globally Harmonized System for Classifying and Labeling Chemicals

Voice of Experience: The Cost of Business

Train the Trainer 101: Understanding Grounding for the Protection of All Employees

Learning Leadership: Leadership Skill Set 2: Self-Regulation

Occupational Dog Bite Prevention & Safety

Safety Awareness for Substations

Bighorn Sheep vs. Lineworkers: What’s the Difference?

OSHA Job Briefing Basics

Voice of Experience: Training for the Qualified Employee

Train the Trainer 101: ASTM F855 Grounding Equipment Specs Made Simple

Foundation Drilling Safety: The Aldridge Electric Story of Success

The Authority to Stop Work

Starting From the Ground Up

Understanding Step and Touch Potential

Multitasking vs. Switch-Tasking: What’s the Difference?

Voice of Experience: Incidents and the Failure to Control Work

Train the Trainer 101: Live-Line Tool Maintenance Program

Passing the CUSP Exam

Learning Leadership: Leadership Skill Set 4: Social Awareness

Ergonomics for Lineworkers

Are Your Temporary Protective Grounds Really Protecting You?

Voice of Experience: Working On or Near Exposed Energized Parts

Train the Trainer 101: Why You Need More than 1910 and 1926

Transitioning to FR Clothing

Leadership Skill Set 5: Social Persuasion

Safety Management During Change

Spice It Up!

The Singing Lineman

Emergency Action Plans for Remote Locations

Trenching and Excavations: Considerations for the Competent Person

Traffic Safety for Lineworkers

Using Best Practices to Drive Safety Culture

Voice of Experience: The Globally Harmonized System is Here

Train the Trainer 101: Grounding Trucks and Mobile Equipment

The Power of an Effective Field Observation Program

What OSHA’s Proposed Silica Rule Means to You

2013 USOLN Safety Award Winners Announced

Learning Leadership: Personal Protective Emotional Armor: Part 1

Electrical Capacitors in AC Circuits

Improving Safety Through Communication

The Benefits of The CUSP Credential

Voice of Experience: Why Did I Do That?

Train the Trainer 101: Practical Elements for Developing a Safety Culture

Learning Leadership: Personal Protective Emotional Armor: Part 2

Fact-Finding Techniques for Incident Investigations

Electrical Safety for Utility Generation Operations Personnel: A Practical Approach

Addressing Comfort and Contamination in Arc-Rated Clothing

Are You Your Brother’s Keeper?

2013 iP Safety Awards

A Key to Safety Performance Improvement

Salt River Project: Devoted to Safety Excellence

Train the Trainer 101: Safety Incentive Programs

Voice of Experience: OSHA 300 Record-Keeping Rules

Understanding and Influencing the ‘Bulletproof’ Employee

Sustaining Safety Successes

Accident Analysis Using the Multi-Employer Citation Policy

PPE: Much More Than Basic or General Protection

Voice of Experience: Understanding Enclosed and Confined Spaces

Train the Trainer 101: OSHA Forklift Certification Requirements

June 2014 Q&A

Injury Prevention Through Leadership, Employee Engagement and Analytics

NFPA 70E Arc Flash Protection for Nonexempt Industry Workers

The Final Rule

Distributed Generation Safety for Lineworkers

The Perils of Distracted Driving

August 2014 Q&A

Voice of Experience: OSHA Eye and Face Protection Standards

Train the Trainer 101: Fall Protection and the New Rule

Responding to Pole Fires

SRP Rope Access Program Addresses Towers of Power

Elements of an Effective Safety Committee

Mitigating the Risks of Aerial Patrols

Job Briefing for One

Culture Eats Programs for Breakfast

October 2014 Q&A

Voice of Experience: Flame-Resistant Apparel is Now PPE

Train the Trainer 101: Stringing in Energized Environments

The Risks and Rules of Chainsaw Operation

Behavior-Based Safety: What’s the Verdict?

Photovoltaic Solar Safety Management for Utilities

Drones and the Future of Tower Safety

Storytelling as a Management Tool

Safety and Common Sense

Snubbing to Steel Lattice Structures: Lessons Learned

February 2015 Management Toolbox

February 2015 Q&A

Voice of Experience: The Importance of Job Briefings

Train the Trainer 101: Addressing Anchorages

Recent PPE Changes and 2015 Trends

Growing a Human Performance Culture

Measuring, Planning and Cutting Methods for Chainsaw Operators

The Importance of Matching Evidence Marks in Accident Investigations

Safe By a Nose

Overhead Utility Hazards: Look Up and Live

April 2015 Management Toolbox

April 2015 Q&A

Voice of Experience: OSHA Updates to Arc-Rated FR Clothing Requirements

Train the Trainer 101: The OSHA-EEI Subpart V Settlement

The Safety Side Effect: How Good Supervisors Coincidentally Improve Safety

Facing Unique Challenges

The Roller-Coaster Life Cycle of IEEE 1307

The Power of Human Intuition

Thirty Years of Personal Perspective

The Most Important Tool on the Job Site

June 2015 Management Toolbox

June 2015 Q&A

Voice of Experience: Fundamentals of Underground Padmount Transformers

Train the Trainer 101: Back to Basics: ‘Gentlemen, This is a Football’

Arrive Alive

How to Navigate the FR Clothing Marketplace

Making the Switch

Understanding OSHA Electric Power Training Requirements

Distribution Switching Safety

Human Performance and a Rat Trap

August 2015 Management Toolbox

August 2015 Q&A

Voice of Experience: Power Generation Safety and the OSHA Update

Stringing Best Practices: Mesh Grips vs. Preforms

Understanding Safety Culture Through Perception Surveys

RF Safety for Utility Workers

2015 USOLN Safety Award Winners Announced

Train the Trainer 101: Practical Underground Safety: Handling Neutrals and Rescue

Voice of Experience: PPE Regulatory and Consensus Standard Requirements

December 2015 Q&A

December 2015 Management Toolbox

The 911 Dilemma

Spotters: A Critical Element of Site Safety

Coping With Industry Changes

The Safety Coaching Observation Process

Fundamentals of Substation Rescue Plans

Recruiting and Training the Next Generation

Shifting Your Organizational Safety Culture

Investigating Industrial Hygiene at Salt River Project

Train the Trainer 101: Practical MAD and Arc Flash Protection

Voice of Experience: Clearing Up Confusion About 1910.269

October 2015 Q&A

October 2015 Management Toolbox

N95 Filtering Face Pieces: Where Does Your Organization Stand?

Stepping Up Steel Safety Education

Rigging Fundamentals for Utilities

Arc Flash Mitigating Technologies and the OSHA Final Rule

Train the Trainer 101: Practical Personal Protective Grounding

OSHA and the Host-Contractor Relationship