Skip to main content

LOOKING FOR SOMETHING?

Granger-PDCA-Web

How Six Sigma Can Improve Your Safety Performance

Written by Ted Granger, CSSBB, CUSP on . Posted in .

Six Sigma is the evolution of statistical quality improvement processes that have been used extensively to improve manufacturing and other process-related industries. How good is Six Sigma? It is a statistical measure of variability or standard deviation. The Six Sigma process calculates to 3.4 defects per million opportunities. Needless to say, that is near perfect execution of a process. Although not often used in the safety arena to full potential, Six Sigma tools can help produce significant and sustainable improvements in safety performance, injury reduction and associated pain.

Total Quality Management
To gain an understanding of Six Sigma, it is helpful to have some historical knowledge of the original statistical improvement tools or the Total Quality Management (TQM) concept. Original quality pioneers such as Walter A. Shewhart, W. Edwards Deming and Kaoru Ishikawa worked with Japanese manufacturing companies in the 1950s to significantly improve the quality of products. The original concept, TQM, has been defined as a management philosophy that produces continuous improvement of products and processes.

One of the most powerful tools that came out of TQM is the Plan/Do/Check/Act (PDCA) continuous improvement wheel. In this concept, plan to do something, do it, check for the effectiveness and, if it’s not performing as planned, act upon that by making changes. Then, on an ongoing basis, “turn the wheel” or plan, do, check and act again. This produces continuous improvement. The concept of PDCA is still just as powerful today as it was when first proposed.

A safety application of PDCA at both a strategic and an operational level is shown in the following diagram.

Granger-PDCA-Web

Six Sigma – Quality on Steroids
Although TQM provided significant quality improvement for users, there were still opportunities to improve the concept. That is why Six Sigma came to be. The Six Sigma management concept was originally developed by Motorola USA in 1986. In 1995, Six Sigma became more visible when Jack Welch made it a focus of business strategy at General Electric. Today, the Six Sigma concept has become the standard process for quality improvement in many industries. The objective of Six Sigma is to improve the quality of processes by identifying and removing the causes of defects. In safety, these process defects can be unsafe behaviors, incorrect procedures or equipment failures, all of which can result in injury.

A Formal Improvement Process
The original TQM used a number of statistical tools, but there was no formal process for integrating all of these tools and developing a complete process improvement solution. Six Sigma uses DMAIC, a clearly defined five-step improvement process that consists of the following:

Define
• Identify the process and define the scope of the project.
• Clearly identify the inputs and outputs of the process.
Measure
• Evaluate the measurement systems and resulting data.
Analyze
• Determine cause-and-effect relationships.
• Identify the root cause of the defects.
Improve
• Develop and implement improvements.
• Test effectiveness of improvements.
Control
• Implement a system to sustain the improvements.


Granger-DMAIC-Web

Define Stage – What Are We Working On?
In the Define Stage, clearly identify the scope of the project or what it is that needs work. Also determine what the target performance should be. It will be necessary to understand what process is failing and resulting in what kinds of injuries.

One of the Six Sigma tools that is typically used in the Define Stage of the DMAIC method is the SIPOC. This tool is typically used in the manufacturing process where it is important to identify the suppliers, inputs, processes, outputs and customers. The diagram below shows the use of this tool in a very simplified version of the line construction work process.

Granger-SIPOC-Web

By applying this tool to safety, one can see how some of the suppliers and inputs – which are normally not considered to have an impact on safety – can indeed have impact. For example, the SIPOC tool helps demonstrate that the people who design the project, design the standards or determine the specifications of the materials should consider safety implications when doing design work.

Measure Stage – Is the Data Correct and What is it Telling You?
In this stage, the data being used is extensively assessed and interpreted. First, ensure that the data is valid and accurately measuring the desired subject. This can often be an issue when analyzing behavior observations. Behaviors such as use of safety glasses are easy to document and address. More controversial items, such as adequate cover-up, are not always documented and addressed. As a result, when combining all of the observation data, since some of it is not valid, the overall observation results may not reflect actual performance.

Often in this phase, charts and graphs will provide directional information stating that performance has improved or degraded, but this may be misleading. Many charts and graphs reflect averages, and important information can be lost in averages. There are a number of tools used in this stage to identify whether it is truly statistically improving or if it just looks better on a chart. Tools that are used in the Measure Stage include histograms, Paretos and process capability.

Analyze Stage – Identifying the Root Cause
In the Analyze Stage, use the data collected and validated in the Measure Stage to determine the root causes of the process defects or injuries. A few of the tools that are used in the Analyze Stage include Cause & Effect Fishbone Diagram, Five Whys and Correlation Testing. The fishbone diagram is familiar to most people because of its extensive use in identifying the root cause of accidents. The importance of this stage cannot be understated because if the root cause is not validated, the corrective measures – tied to that root cause – will not provide the desired results.

Improve Stage – The Corrective Measures
After completing the Analyze Stage, potential corrective measures often become evident. During the Improve Stage, it is most important to test the potential corrective measures to see if they will address the root cause. In the safety arena, that does not mean to wait and see if another injury occurs. The root cause needs to be prevented, not the injury. In the case of eye injuries, the identified root cause may be the employees not wearing safety glasses or employees wearing improperly fitting safety glasses. In this case, the Improve Stage would include a process for fitting glasses and providing them to employees. In this stage, pilot trials or other forms of testing effectiveness can be used.

Control Stage – Make it Sustainable
The primary objective of the Control Stage is to monitor results and ensure that the expected improvements are being achieved and sustained. One of the biggest challenges, especially when implementing safety improvements, is ensuring that those improvements will be sustained. Far too often, events or injuries occur and upon analysis, corrective measures were recommended and implemented several years ago for a previous event, but are not working or are not in place for various reasons.

One reason for this could be that a good process was not in place to sustain corrective measures. Actual examples include:
• A safety improvement memo was sent out, but there was no follow-up to ensure that people implemented it.
• A new, safer tool was specified and purchased, but the older, unsafe tool is still found throughout the system. In the case of safety glasses, the employees are no longer using the ones they were fitted with.

Another reason may be that the original corrective measure did not correct the original root cause. This should have been identified when testing the effectiveness of the corrective measure in the Improve Stage.

Of all of the stages in the DMAIC process, I feel the Control Stage is the most important and most overlooked.

Conclusion
This represents only a small example of the tools and methods that are typically used in the DMAIC process. There is no question that use of Six Sigma and the DMAIC process requires trained facilitators to assist in providing desired results. The results, though, can be substantial if the process is properly followed. If an organization has access to someone with these skills, they can be very helpful in identifying the root causes of injuries and developing sustainable corrective measures. Appropriately utilized, Six Sigma can be an important component in creating an injury-free workplace.

About the Author: Ted Granger, CSSBB, CUSP, is an independent safety consultant affiliated with the Institute for Safety in Powerline Construction. He provides training, lectures and safety consulting services. Prior to his current role, Granger served in various managerial positions during his 37-year career at Florida Power & Light Company. These included T&D operations, human resources, logistics and safety, where he utilized his Six Sigma Black Belt certification. He can be contacted at tedjgranger@gmail.com.

IP ARTICLE VAULT 2004 - 2015

Human Performance Tools: Important or Critical?

2014 USOLN Safety Award Winners Announced

Arc Flash and the Benefits of Wearing PPE

Closing the Safety Gap

Chainsaw Safety, Planning and Precision Felling Techniques

Train the Trainer 101: Substation Entry Policies

Voice of Experience: How Does the Employer Ensure and Demonstrate?

December 2014 Q&A

December 2014 Management Toolbox

Lessons Learned, Successful Implementation of Behavioral Safety Coaching

The Pain Game: Preventing MSDs

Eliminating Excuses

Training for the New Century

Fall Protection by the Numbers

Injury Free Change

What It Takes to be a Safety and Compliance Leader

Why Single-Point Grounding Works

The Burning Question

Notes From the Underground

Leadership Influencing the Culture

Ergonomics: Preventing Injury

Taking Safety to the Next Level

4 Rules to Live By

Frostbite

A Friend in Need at Indiana Rural Electric Coops

Cleaning Rubber Goods for Safety

Lowering the Threshold

CAVE-IN! Increasing Job Site Safety & Reducing Costs

Keeping the ‘Fighter Pilots’ of Your Company Safe

Safety Comes First at SM Electric

Dramatic Results

Focusing on Safety at Comcast

When is a Lineman a Lineman?

Making Sure Everyone Goes Home Safe at Southern California Edison

Stay Alert! Work Safe!

Everyone Benefits at Charter Communications

Dissecting an OSHA Inspection

Top Five PPE Mistakes

Ultimate Protection

Learning Curve

Total Success at Dominion

NESC-2007 Update

Making Safe Choices

Tips for Improving Incident Investigation Interviews – Part 1: Preparation

The Key to Safety at KCP&L

Digging Out – The Interagency Snow Rescue Task Force

LockOut TagOut

Tips for Improving Incident Investigation Interviews- Part 2: Contact Time

Dreams Can Become Reality: SDG&E Flex Center

Bridging Communication Gaps

Equipotential Grounding at AEP

Training Development

Focusing on a Safety Culture at Consumers Energy

Substations: Eliminating the Dangers Within

Ensuring Safety at Grand Bahama Power

Perfect Storm – The Case for AED’s

Embracing Change: Think Human Performance

NESC 2007 FLAME RESISTANT CLOTHING

Managing Safety Rule Violations

Passion for Safety

How to Bulletproof Your Training

Tower Rescue Pre-planning Pays Off

Managing Safety

Effective Fall Protection for Utility Workers

Safety Information Superhighway

Inspection of Wooden Poles

Free Climbing vs. Safer Climbing

Safety Culture Success

Inspecting, Cleaning and Storing Live-Line Tools

Arc Flash – Are You in Compliance?

Human Performance

Training Second Point of Contact

Preventing Underground Damage

Keeping Things Safe in the Field and the Office

Winter Safety Vehicle Checklist

Strategies for Safety in the Wind Industry

What’s in a Number?

How to Choose and Use Ergonomic Hand Tools

Meeting the Challenge

Machine Safety

What You Need to Know About Substations

Moving from Operations into Safety or Training

Distribution Dispatcher or System Operator?

High Visibility and Arc Ratings for Flame Resistance

Stuck in the Mud

Aerial Rescue

Going With the Wind

Incident Analysis

Hidden Traps of Generator Use and Backfeed

Making the Right Choice

Soil Resistivity Testing & Grounding System Design: Part I of II

Succession Syndrome

Making Safety a Core Value

Floodwater Hazards and Precautions

Know the Signs and Symptoms of Heat-Related Illnesses

Huge Steps

Seamless and Compliant

Soil Resistivity Testing & Grounding System Design: Part II of II

Aerial Lifts

How Good Are Your Tailgates?

Root Cause Analysis

Maturity Matters

What Do We Do About Arc Hazard?

NESC-2012-Part 4: Summary of Change Proposals

A FULL Commitment

Arc Suppression Blanket Installation

What Does NFPA 70E Mean To You?

How Safe Are Your Ground Grids?

Introducing a New Certification Program for Utility Safety Professionals

Confused About Arc Flash Compliance?

Analyzing Safety and Hazards on the Job

Error-Free Performance

People Focused Safety

No Substitute

Error-Free Performance: Part II

Heard It Through the Grapevine

Best Practices

Line of Fire

Is Your Company Ready for the Next Disaster?

Preventing Employee Exposure to Pesticides

Compressed Gas Cylinder Safety

LOTO vs. Switching and Tagging

Are You on Cruise Control?

Solid Footing

Hand Protection

Crane & Derrick Compliance

Mind Control: Distractions, Stress and Your Ability to Work Safely

Rubber Insulating Line Hose

Procedure for Reducing Injuries

Huskie Tools Opens New Fiberglass Restoration Division

A92.2: The 2009 Standard

Vehicle Operation Winter Readiness

ATV Safety Begins with Proper Training

Innovate or Follow: The Argument Against A Best Practice

Northeast Utilities Takes Safety Off-Road

High-Pressure Hydraulic Injection Injuries

100 Percent Fall Protection: A Joint Union-Management Effort

Crew Foreman Needed: Who Do We Pick?

Behavior Safety: A Safety Program’s Missing Link

Challenges & Successes

Drop Zone Management: Expanding Our View of Line of Fire

Taking Stock of Your Fall Protection Compliance

Live-Line Tool Use and Care

Employee Training: How Hard Can It Be?

Supervisory Skills for Crew Leaders

Equipment: Back to Basics

A Second Look at Safety Glasses

Competition for a Cause

Human Behavior and Communication Skills for Crew Leaders

Cultivating a Mature Workforce

What’s Your Seat Belt IQ?

Substation Safety

No-Voltage Testing

Five PPE Safety Challenges

Safety Circuitry: The Power in the Brain

Arc Flash Exposure Revisited: NESC 2012 Part 4 Update

T&D Best Practices for Crew Leaders

CUSP Basics: Introduction to Human Performance Principles

Felling of Trees Near Power Lines

Working in Winter

Back to the Basics: PPE 101

Hearing Conservation: An Interesting Challenge

T&D Safety Management for Crew Leaders

Basic Qualifications of Employees

FR Layering Techniques

Safety Rules and Work Practices: Why Don’t They Match Up?

Effective Customer Relationships for Crew Leaders

The Value of Safety Certification

Safety Leadership in a Written Pre-Job Briefing

Communication: The Key to Great Safety

Safe Use of Portable Electric Tools, Cords and Generators

Keys to Effective Fall Protection

Integrity and Respect: Two of Our Most Important Tools

The Intersect: A Practical Guide to Work-Site Hazard Analysis

Strategic Safety Partners

Behavior Safety Training for Safety Committee Members

Combating Overuse and Overexertion Injuries

Safe Digging – Get the 411 on 811

Apprenticeship Training

How S.A.F.E.T.Y. Brought Bluebonnet Through the Fires

Formal vs. On-the-Job Training

That’s What I Meant to Say: Safety Leadership in Communication

The Value of Personal Protective Equipment

Safety and Human Performance: You Can’t Have One Without the Other

Oh, No! Changes in the Workplace

Performance Improvement: Barriers to Events

Train the Trainer 101: Ferroresonance Explained

Voice of Experience: Safety Excellence Equals Operational Excellence

A Mirror: Your Most Important PPE

Care of Portable Ladders

Voice of Experience: FMCSR Compliance: Driver Qualification Files

Train the Trainer 101: Enclosed Space Rescue

Keys to Evaluating and Comparing Arc-Rated and Flame-Resistant Fabrics

Raising the Bar, Lowering the EMR

How Six Sigma Can Improve Your Safety Performance

Detecting Shock Hazards at Transmission Line Work Sites

Care and Maintenance of Climbers

Voice of Experience: Are You Ready for the Big Storm?

Train the Trainer 101: Working from Crane-Mounted Baskets

Learning Leadership: The Leadership Paradigm Shift

Are You Prepared for the Next Generation of Lineworkers?

Implementing a Zero Injury Program

Public Safety and Our First Responders

Managing Cold Stress

Live-Line Work on the Jersey Shore

Soil Classification and Excavation Safety

Voice of Experience: The Definition of Personal Protective Equipment

Learning Leadership: Leadership Skill Set 1: Self-Awareness

Evaluating Crew Supervisors

Train the Trainer 101: Arc Hazard Protection

NESC and ANSI Z535 Safety Sign Standards for Electric Utility Power Plants and Substations

Working Safely with Chain Saws

The Globally Harmonized System for Classifying and Labeling Chemicals

Voice of Experience: The Cost of Business

Train the Trainer 101: Understanding Grounding for the Protection of All Employees

Learning Leadership: Leadership Skill Set 2: Self-Regulation

Occupational Dog Bite Prevention & Safety

Safety Awareness for Substations

Bighorn Sheep vs. Lineworkers: What’s the Difference?

OSHA Job Briefing Basics

Voice of Experience: Training for the Qualified Employee

Train the Trainer 101: ASTM F855 Grounding Equipment Specs Made Simple

Foundation Drilling Safety: The Aldridge Electric Story of Success

The Authority to Stop Work

Starting From the Ground Up

Understanding Step and Touch Potential

Multitasking vs. Switch-Tasking: What’s the Difference?

Voice of Experience: Incidents and the Failure to Control Work

Train the Trainer 101: Live-Line Tool Maintenance Program

Passing the CUSP Exam

Learning Leadership: Leadership Skill Set 4: Social Awareness

Ergonomics for Lineworkers

Are Your Temporary Protective Grounds Really Protecting You?

Voice of Experience: Working On or Near Exposed Energized Parts

Train the Trainer 101: Why You Need More than 1910 and 1926

Transitioning to FR Clothing

Leadership Skill Set 5: Social Persuasion

Safety Management During Change

Spice It Up!

The Singing Lineman

Emergency Action Plans for Remote Locations

Trenching and Excavations: Considerations for the Competent Person

Traffic Safety for Lineworkers

Using Best Practices to Drive Safety Culture

Voice of Experience: The Globally Harmonized System is Here

Train the Trainer 101: Grounding Trucks and Mobile Equipment

The Power of an Effective Field Observation Program

What OSHA’s Proposed Silica Rule Means to You

2013 USOLN Safety Award Winners Announced

Learning Leadership: Personal Protective Emotional Armor: Part 1

Electrical Capacitors in AC Circuits

Improving Safety Through Communication

The Benefits of The CUSP Credential

Voice of Experience: Why Did I Do That?

Train the Trainer 101: Practical Elements for Developing a Safety Culture

Learning Leadership: Personal Protective Emotional Armor: Part 2

Fact-Finding Techniques for Incident Investigations

Electrical Safety for Utility Generation Operations Personnel: A Practical Approach

Addressing Comfort and Contamination in Arc-Rated Clothing

Are You Your Brother’s Keeper?

2013 iP Safety Awards

A Key to Safety Performance Improvement

Salt River Project: Devoted to Safety Excellence

Train the Trainer 101: Safety Incentive Programs

Voice of Experience: OSHA 300 Record-Keeping Rules

Understanding and Influencing the ‘Bulletproof’ Employee

Sustaining Safety Successes

Accident Analysis Using the Multi-Employer Citation Policy

PPE: Much More Than Basic or General Protection

Voice of Experience: Understanding Enclosed and Confined Spaces

Train the Trainer 101: OSHA Forklift Certification Requirements

June 2014 Q&A

Injury Prevention Through Leadership, Employee Engagement and Analytics

NFPA 70E Arc Flash Protection for Nonexempt Industry Workers

The Final Rule

Distributed Generation Safety for Lineworkers

The Perils of Distracted Driving

August 2014 Q&A

Voice of Experience: OSHA Eye and Face Protection Standards

Train the Trainer 101: Fall Protection and the New Rule

Responding to Pole Fires

SRP Rope Access Program Addresses Towers of Power

Elements of an Effective Safety Committee

Mitigating the Risks of Aerial Patrols

Job Briefing for One

Culture Eats Programs for Breakfast

October 2014 Q&A

Voice of Experience: Flame-Resistant Apparel is Now PPE

Train the Trainer 101: Stringing in Energized Environments

The Risks and Rules of Chainsaw Operation

Behavior-Based Safety: What’s the Verdict?

Photovoltaic Solar Safety Management for Utilities

Drones and the Future of Tower Safety

Storytelling as a Management Tool

Safety and Common Sense

Snubbing to Steel Lattice Structures: Lessons Learned

February 2015 Management Toolbox

February 2015 Q&A

Voice of Experience: The Importance of Job Briefings

Train the Trainer 101: Addressing Anchorages

Recent PPE Changes and 2015 Trends

Growing a Human Performance Culture

Measuring, Planning and Cutting Methods for Chainsaw Operators

The Importance of Matching Evidence Marks in Accident Investigations

Safe By a Nose

Overhead Utility Hazards: Look Up and Live

April 2015 Management Toolbox

April 2015 Q&A

Voice of Experience: OSHA Updates to Arc-Rated FR Clothing Requirements

Train the Trainer 101: The OSHA-EEI Subpart V Settlement

The Safety Side Effect: How Good Supervisors Coincidentally Improve Safety

Facing Unique Challenges

The Roller-Coaster Life Cycle of IEEE 1307

The Power of Human Intuition

Thirty Years of Personal Perspective

The Most Important Tool on the Job Site

June 2015 Management Toolbox

June 2015 Q&A

Voice of Experience: Fundamentals of Underground Padmount Transformers

Train the Trainer 101: Back to Basics: ‘Gentlemen, This is a Football’

Arrive Alive

How to Navigate the FR Clothing Marketplace

Making the Switch

Understanding OSHA Electric Power Training Requirements

Distribution Switching Safety

Human Performance and a Rat Trap

August 2015 Management Toolbox

August 2015 Q&A

Voice of Experience: Power Generation Safety and the OSHA Update

Stringing Best Practices: Mesh Grips vs. Preforms

Understanding Safety Culture Through Perception Surveys

RF Safety for Utility Workers

2015 USOLN Safety Award Winners Announced

Train the Trainer 101: Practical Underground Safety: Handling Neutrals and Rescue

Voice of Experience: PPE Regulatory and Consensus Standard Requirements

December 2015 Q&A

December 2015 Management Toolbox

The 911 Dilemma

Spotters: A Critical Element of Site Safety

Coping With Industry Changes

The Safety Coaching Observation Process

Fundamentals of Substation Rescue Plans

Recruiting and Training the Next Generation

Shifting Your Organizational Safety Culture

Investigating Industrial Hygiene at Salt River Project

Train the Trainer 101: Practical MAD and Arc Flash Protection

Voice of Experience: Clearing Up Confusion About 1910.269

October 2015 Q&A

October 2015 Management Toolbox

N95 Filtering Face Pieces: Where Does Your Organization Stand?

Stepping Up Steel Safety Education

Rigging Fundamentals for Utilities

Arc Flash Mitigating Technologies and the OSHA Final Rule

Train the Trainer 101: Practical Personal Protective Grounding

OSHA and the Host-Contractor Relationship