Incident Prevention Magazine

Incident Prevention is on a mission to be a major player in the reduction of job related accidents within utilities and telecommunications. The publication, our iP Safety Conferences and this site are dedicated to providing utility safety and operations professionals the resources to build safety programs and implement processes that lead to reduce...d work-related incidents.
Free Subscription
More
Jim Vaughn, CUSP

April 2017 Q&A

Q: Our plant safety committee has a longtime rule requiring electrical hazard safety shoes for our electricians. We were recently told by an auditor that we have to pay for those shoes if we require employees to wear them. We found the OSHA rule requiring payment, but now we wonder if we are really required to use the shoes. Can you help us figure it out?

A: Sure, we can help. But first, please note that Incident Prevention and the consultants who have reviewed this Q&A are not criticizing a rule or recommending a rule change for any employer. What we do in these pages is explain background, intent and compliance issues for workers and employers in the workplace.

You mentioned a longtime rule that probably dates back to the early OSHA rules that required electrical hazard boots for electricians. We can’t remember exactly when, but there was a letter to administrators in the early 1990s and subsequent rule-making that changed the language on the use of electrical hazard shoes. Your auditor is right; if you require employees to wear them, you are required to pay for them because unlike regular safety shoes, the electrical hazard criterion makes the safety shoe a specialty shoe. Specialty shoes must be provided at no cost to the employee (see www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=INTERPRETATIONS&p_id=29825).

Now let’s address the question, are the shoes required? Employers are required to perform a workplace hazard assessment and then use engineering or procedural controls to eliminate hazards. If a hazard cannot be eliminated by procedures or engineering, PPE is required. OSHA agrees throughout current literature that electrical hazard shoes are to be employed as part of a system of protection based on the hierarchy of controls. If you read the rule closely, you will see that the language is very particular. OSHA 29 CFR 1910.136(a) – edited here for clarity and space – states that the “employer shall ensure that each affected employee uses protective footwear … when the use of protective footwear will protect the affected employee from an electrical hazard, such as … electric-shock hazard, that remains after the employer takes other necessary protective measures.” Those other measures are the hierarchy first, PPE last.

Continue reading
  4283 Hits
  0 Comments
David McPeak, CUSP, CET, CHST, CSP, CSSM

Frontline Fundamentals: Risk Tolerance

A fundamental premise of working safely is that hazards must be identified and then controlled. Too many incidents occur because hazards are not identified, or worse, they are identified but ignored or tolerated.

One of my favorite ways to introduce the concept of risk tolerance is to ask a Frontline class this simple question: “What are some things you might hear someone say before something really bad happens?” It always amazes me – and scares me – how open participants are when I ask this question. Typical responses I have heard include:
• “We’ve done this a thousand times and no one has ever gotten hurt.”
• “We’ve always done it this way.”
• “This is going to hurt.”
• “If this works, we’ll be heroes.”
• “I think it will hold.”
• “I can survive anything for two minutes.”
• “What’s the worst that could happen?”
• “Here goes nothing.”

That list could go on for a long time, and it gives us a lot of insight into how we think about hazards and risk. In fact, I want to be sure to mention one incredibly memorable response not listed above that led to some great discussion about risk tolerance: “Hold my beer and watch this.”

Take a moment to remember if you have ever made that statement or heard someone else make it. What followed? I have heard stories involving “testing” an underground dog fence, in which someone held the shock collar in his hand and ran through the fence; jumping off a roof into a swimming pool; attempting to bench-press 400 pounds; boxing a kangaroo; and a myriad of other superhuman feats fueled by alcohol. Oddly enough, sober people do not think it is cool or that it will impress someone if they, for instance, eat a spoonful of cinnamon.

Continue reading
  4620 Hits
  0 Comments
Mark J. Steinhofer, CHST, CSP, CUSP

The Silent Secret About Successful Safety Communication

The Silent Secret About Successful Safety Communication

It’s a chilly morning, and the crew is eager to make progress on the substation upgrade before tomorrow’s snow. A shiny pickup truck pulls up to the job site, the driver’s door opens and out walks a good-looking guy in neatly pressed khakis, a white button-down shirt and highly polished lace-up shoes. He stops a couple yards away from the crew, looks at everyone, breaks into a cheesy smile and makes a joke about his golf game.

Nobody laughs or even snickers. After an awkward pause, “Joe Office” tells the crew that fall protection is the day’s safety discussion topic. He points to one of the crew members and mentions that he saw him working without a harness yesterday, and that isn’t acceptable. He drones through the rest of the lesson and asks if anyone has any questions. There’s no response from the crew, so Joe Office grins again and tells everyone to stay safe as they shuffle off to the day’s tasks.

Words Mean Little
What Joe Office doesn’t realize is that nobody paid attention to anything he said. Oh, they heard him just fine, but Joe lost most of the crew members before he opened his mouth, and the rest tuned out within the first 30 seconds of hearing him speak. They pretended to listen while they thought about other things.

It’s true that Joe Office knows a lot about safety. Unfortunately, he has no clue what his body language projects and can’t read the body language of the workers with whom he’s communicating. As a result, in this scenario he wasted everyone’s time and had zero effect on the crew’s well-being.

The fact is that humans do far more listening with our eyes than we do with our ears. According to Mehrabian and Wiener, and Mehrabian and Ferris, when a verbal message is delivered, a typical human being only receives about 7 percent of the message via the words that are spoken. Thirty-eight percent of how a person receives a message is due to the way those words are delivered. And a full 55 percent of the message is conveyed through the speaker’s body language.

In other words, when a safety professional speaks to a group of workers, the nonverbal components of his or her message have a far greater impact on listeners than what’s actually being said. The professional’s physical appearance, body language, tone and pace of voice determine how carefully the workers will listen and how much they’ll retain.

Continue reading
  8735 Hits
  0 Comments
Dwight Miller

Equipotential Grounding: Lessons Learned in the Field

Equipotential Grounding: Lessons Learned in the Field

When the earliest linemen first began to ground lines for worker protection, they attached a small chain – known as a ground chain – to the conductors, with the end dropped to the ground. When I began to work on a line crew, I’m sad to say that my grounding practices weren’t much better than those used in the early days. I wish someone had better explained to me then the situations that could arise, the ways grounding could protect me and the best methods to accomplish it. So, in an effort to help out other lineworkers in the electric utility industry, I want to share in the following pages some of the important aspects of grounding that I’ve learned throughout my career.

Worker Protection
Ever since enforcement of 29 CFR 1910.269 began in 1994, OSHA has required grounding practices that will protect employees in the event that the line or equipment on which they are working becomes re-energized. The equipotential zone, or EPZ, is made to do just that.

If you read paragraph 1910.269(n)(3), the preamble discussion and Appendix C to 1910.269, titled “Protection From Hazardous Differences in Electric Potential,” OSHA’s intent seems clear. To summarize, install temporary grounds and bonds at the worksite in such a manner that keeps the worksite at the same potential and prevents harm to workers even if the line is accidentally re-energized or exposed to induced voltages. You can follow Appendix C as a one-size-fits-all approach or perform your own engineering analysis to create procedures. But keep in mind that if you create your own procedures, you must be able to demonstrate they will protect your workers.

Continue reading
  14570 Hits
  0 Comments
Dr. Andrew Murro, DC, DABCO

Understanding and Preventing Lower Back Pain in the Electric Utility Industry

Understanding and Preventing Lower Back Pain in the Electric Utility Industry

“I don’t know what I did to cause this injury, Doc. I’ve had lower back pain on and off for the past five years, but it’s never been like this before. All I did was reach under the boom for a roll of cable on the truck when I felt something give in my back and then felt shooting pain down both legs. What the heck happened?”

This is not an unusual story. When I used to practice as a chiropractic orthopedist, I heard similar accounts on a daily basis. Lower back pain affects utility workers in epidemic proportions. In 2004, my company surveyed 224 employees of a public electric utility, and the results revealed that more than one of every five lineworkers reported living with moderate to severe lower back pain on a weekly or daily basis. There are valid reasons why most lineworkers believe that lower back pain is just a consequence of the work they do, but the good news is that it doesn’t have to be that way.

The Mechanics of Back Pain
Most lower back pain is mechanical in nature, meaning it does not come from cancers, other diseases or infections. But it doesn’t necessarily come from performing physical work either. All physical work causes some daily microscopic wear and tear of your body, and the more a job requires you to do physically, the more wear and tear will occur. Before you start looking for another job, however, remember that your body is fully capable of repairing the vast majority of the wear and tear that occurs from demanding physical work. The painful conditions that most lineworkers experience in their careers occur because the balance between the amount of damage done each day and the repair that occurs each day gets thrown out of whack. How you position and move your body as you perform work dramatically affects how much wear and tear you sustain each day. Habitually working with stressful techniques can cause more microscopic damage on a daily basis than your body is capable of repairing. If it is not repaired, this microscopic damage accumulates over time and eventually causes painful conditions. “Cumulative trauma” is the name given to this slow accumulation of microscopic damage. As cumulative trauma increases over the years, the end results commonly are painful conditions, serious injuries and degenerative arthritis.

Continue reading
  9029 Hits
  0 Comments
Hugh Hoagland and Stacy Klausing, M.S.

Maximizing Your Arc-Rated Gear

Maximizing Your Arc-Rated Gear

When designing your PPE program, how do you know which option will work best for your application? How can you get the most for your money? How can you get no-cheating compliance from your workers? With so many arc-rated (AR) and flame-resistant (FR) PPE products on the market, it can be difficult for a utility or utility contractor to make a sound decision. To start, complete an analysis to determine hazard levels, as well as the workers who will be exposed. Application, comfort and cost should be considered when deciding on the best product to purchase. In this article, we will help you see how to maximize your AR and FR gear. The process begins with making a choice that makes sense for your company and your application, and then you will need to know how to care for the PPE so you can get the most from your money and extend the equipment’s lifespan.

Application and Comfort
While there have long been arguments and marketing claims about the superiority of either treated or inherent fibers used for FR and AR clothing, the truth is that both can work well from a protection standpoint, and both have a place in the market. Determining which one to use depends on the application and properties the end user needs.

For instance, aramids are durable and can work well with exposure to certain acids and bases – as an example, para-aramid is sensitive to chlorine bleach, mineral acids and UV, but these do not affect its flame resistance – yet pure aramids do not work well with regard to molten metal hazards because molten metal sticks to the fabric. However, there are several aramid blends that work well with molten metal. Modacrylics are great for chemical resistance, but the fiber has a high amount of shrinkage in a thermal exposure and doesn’t pass some of the small-scale tests for flash fire unless blended. Cottons and a similar, regenerated cellulose FR fiber known as FR rayon are breathable, soft and relatively inexpensive, yet they do not perform well in acid exposures. They also have fair colorfastness, meaning that their colors can fade with exposure to light and laundering.

Continue reading
  8221 Hits
  0 Comments
Jim Vaughn, CUSP

Train the Trainer 101: The New Walking-Working Surfaces Final Rule

OSHA’s final rule on 29 CFR 1910 Subpart D, “Walking-Working Surfaces,” is finally here. It’s 26 pages of nine-point font equaling 21,675 words, and I read them all. It’s big, and if you include the preamble in your analysis, it is also complicated. It was just as hard to write about as it was to read. I guess that shouldn’t be unexpected for a final rule that has been in the works since 1983. The original 1910 Subpart D was published in 1971. The first update was proposed in 1983, but it was never ratified. Proposals were again considered in either the Construction standard or the General Industry standard in 1990, 1994 and 2003. This edition of the final rule for 1910 Subpart D covers it all. OSHA should be congratulated for bringing almost all of the fall-related standards into one location, making it easier for the employer to find rules related to working surfaces under one subpart instead of having to search for those rules that may affect the employer’s workplace. This may be news to some novice safety professionals in the utility industry, but not all regulations affecting us are restricted to 1910.269 or 1926 Subpart V. Subpart D applies, so it is important to be familiar with it.

What’s New?
Preventing falls is almost the entire purpose of rules for walking-working surfaces. The surfaces are not always those spaces of aisles between walls. Most walking or working spaces in the workplace are not defined aisles; they are more likely to be incidental spaces about the work area. It is quite easy for those incidental spaces to be encumbered by tools, materials and process waste that create stumbling or tripping hazards. In addition, many of those working spaces are raised surfaces, from the tops of foundations to the tops of skyscrapers. That being the case, OSHA has brought into Subpart D the body of fall protection standards. You will now find a greatly expanded section on ladders; step bolts (towers) and manhole steps; scaffolds and rope descent systems (building maintenance); the duty to have fall protection; new and expanded requirements on fall protection equipment design; and some expanded language on the training of employees to recognize and prevent falls in the workplace.

Continue reading
  10712 Hits
  0 Comments
Danny Raines, CUSP

Voice of Experience: Inspection, Maintenance and Fall Protection Guidance for Bucket Truck Use

OSHA 29 CFR 1910.67 is the performance-based standard that covers requirements when using vehicle-mounted elevating and rotating work platforms, including the bucket trucks we use in the electric utility industry. There are many types of buckets, and the task to be performed will determine what type of bucket is required. This standard even covers noninsulated work platforms, sometimes referred to as JLGs, used in civil construction. For clarification, a mobile platform covered under 1910.68, “Manlifts,” is not covered under the 1910.67 standard. Mobile platforms are considered mobile scaffolding and require standard guardrail protection. Additional fall restraint normally is employed depending on the type of work and availability of fall protection attachment points.

Although today our industry is better trained than ever, it wasn’t so long ago that one of the most violated standards was the requirement to fly the booms every day before employee use. According to paragraph 1910.67(c)(2)(i), “Lift controls shall be tested each day prior to use to determine that such controls are in safe working condition.”

The fall protection requirements for utility bucket trucks are currently covered under 1910.269(g), “Personal protective equipment.” The users of bucket trucks now have options for fall protection, including a personal fall arrest system, fall prevention or a retractable lanyard. Fall protection equipment is much more user-friendly and lightweight than ever before.

In the remainder of this article, I want to focus on bucket truck inspections and maintenance required by OSHA, manufacturers and others. This information is critical but sometimes is not followed by employers or employees, which has led to a number of catastrophes.

Continue reading
  6873 Hits
  0 Comments
Jim Vaughn, CUSP

February 2017 Q&A

Q: We are a small, distribution-only municipal utility that has been looking into human performance. We are having some trouble understanding it all and how it could benefit us. Most of the training resources are pretty expensive. Can you help us sort it out?

A: We can. Human performance management (HPM) has been around in various forms and focuses since before the 1950s. Throughout the ’50s and ’60s, it seems the focus was on companies performing functional analysis and correcting issues that created losses, thereby promoting more efficient and error-resistant operations. In the ’60s and ’70s, much of the literature on HPM seemed to surround the nuclear power industry, and indeed the introduction of HPM into the transmission/distribution side of the utility industry appears to have come through the generation side. In the ’70s, researchers began to experiment and write about more closely analyzing the knowledge and skills of the performer. It took a while to sink in, but the safety industry began to research HPM as a culture analysis and risk prevention tool. It makes sense. Human performance – in particular knowledge, skills modes, decision-making modes and performance – affects all of every enterprise whether you have an HPM program or not. Organizations are made of people. HPM has identified and categorized commonalities in types of personalities that predict how people make decisions and perform tasks. Studying human performance also can help identify safety culture issues and risk behaviors. It’s not a big or expensive step to train your workforce on problem-solving and decision-making characteristics of the human mind. Soon they will understand their own processes and the limitations of the way they naturally think, allowing them to make adjustments toward better performance. So if we can take advantage of HPM to prevent incidents, why not do it? Most organizations start small. Pick a few key people to begin training on the basics of HPM, and then look at your organization to see where the initial undertakings can do the most good. There are several experts associated with Incident Prevention who will be glad to help should you need it. Additionally, on the iP website (www.incident-prevention.com) you can find numerous HPM articles in the iP archives as well as information and training sessions from past iP Utility Safety Conferences. HPM works. We hope you will pursue it.

Continue reading
  5362 Hits
  0 Comments
David McPeak, CUSP, CET, CHST, CSP, CSSM

Frontline Fundamentals: Controlling Hazards

Frontline Fundamentals: Controlling Hazards

“Get us a bucket truck, a rock and a hard hat. The rest of the class and I will meet you outside in 10 minutes.” Those were my instructions to a participant who, during a recent Frontline program session, challenged me as I was teaching the hierarchy of controls and explaining why PPE should be considered the last line of defense.

The participant was adamant that he had always been trained that PPE is your primary protection and that if you are wearing it, you are protected and can work as you want. The rest of the group validated that was how they understood their training. This put us at an impasse because I firmly believe safety boils down to your ability to identify and control hazards, and I am extremely passionate about using the hierarchy of controls as a decision-making tool to control hazards to the fullest extent possible. I also believe overreliance on PPE is a serious and growing problem, and that far too often, hazards are identified but tolerated or not properly controlled.

After about 10 minutes of failed examples and discussion with this Frontline group, I decided to go another route and requested the bucket truck, rock and hard hat. The participant who had challenged me gave me a quizzical look and replied, “What?” I told him that per his understanding of PPE, if there was a hazard that involved me dropping a rock from a bucket raised 30 feet in the air, he was OK standing underneath the bucket as long as he was wearing his hard hat. I then gave him three choices: eliminate the hazard (I don’t drop the rock); eliminate the risk (he doesn’t stand underneath the bucket); or I drop the rock and he relies on his hard hat for protection.

Suddenly it became obvious to the class why elimination is the first choice in hazard control and PPE is the last line of defense. We then had an amazing and exciting discussion about the hierarchy of controls and how the group was going to change their training. More importantly, the class talked about how they were going to approach hazard mitigation in the future.

Continue reading
  6910 Hits
  0 Comments
Sam Stonerock

New Updates to the National Electrical Safety Code

New Updates to the National Electrical Safety Code

The National Electrical Safety Code is a referenced standard to OSHA 29 CFR 1910.269. A referenced standard means it is a voluntary consensus standard that OSHA recognizes as a means to help the employer meet the requirements of the OSHA rules. OSHA will not cite an employer on the basis of an NESC provision, but the agency may use the NESC as evidence the employer knew a hazard existed and may have been prevented using the provisions of the NESC.

The 2017 edition of the NESC was released earlier this year. It has been reorganized for easier use and includes a number of changes and exceptions to rules, as well as the introduction of some new, useful tools to help users more easily access and utilize NESC content. The latest edition follows a tradition to ensure the continued practical safeguarding of persons and utility facilities during the installation, operation and maintenance of electric supply and communication facilities. NESC Part 4 is the pertinent section for lineworker safety, and it has been revised fairly extensively. The following summary of the changes can be a useful guide for those directly impacted in their daily work.

Arc Hazards
NESC Part 4 rules include a section on arc hazards that was updated in the 2012 edition. At that time, a new low-voltage arc flash table was added that coincides with the rules in the code related to arc hazard analysis. This table has been further modified in the 2017 edition of the NESC. The table, numbered 410-1, is based on recent industry testing performed with the Electric Power Research Institute and Pacific Gas and Electric Co., and now includes more detailed information, primarily on 480-volt arcs.

Revisions have also been made to Rule 410A3 to help ensure that employers perform an assessment to determine the potential exposure to electric arcs for their employees when they go to work on energized lines or equipment. This rule is used to help determine the flame-resistant and other types of personal protective equipment that is necessary. Exception 4 has been added to the rule to help employers and employees understand when protection is needed for the head and face.

Continue reading
  10548 Hits
  0 Comments
Eduardo Suarez

Creating a Safe Driving Culture

Creating a Safe Driving Culture

At ComEd, as with any other electric utility, keeping the lights on is important. However, no job is so important that it cannot be done safely, and that includes driving to and from the job site. Over the past few years, ComEd – a unit of Chicago-based Exelon Corp. and the largest electric utility in Illinois – has worked diligently to educate its drivers about safe driving practices, help them develop skills and learn techniques to avoid accidents, and raise awareness about the many distractions that can occur on the road today. Drivers are encouraged to “treat driving with the respect it deserves,” whether at a reporting location, on the road or at a customer’s property.

ComEd’s Safe Driving Initiatives
Defensive driving, according to the National Safety Council, is defined as “driving to save lives, time and money in spite of the conditions around [the driver] and the actions of others.” In order to set clear expectations for its driving force, ComEd has adopted a driver safety program to help its drivers improve their defensive driving skills. Following are descriptions of a number of safe driving initiatives included in the driver safety program that have worked for the utility.

Smith Driving System
This is the foundation of ComEd’s safe driving program. All employees who drive company vehicles are trained on the Smith Driving System, which is based on five key principles:
1. Aim high in steering. Make sure you’re looking far enough ahead of your vehicle so you have time to react to any hazardous situation that may present itself.
2. Get the big picture. Keep the acronym G.O.A.L. – Get Out And Look – in mind, and search for hazards all around your vehicle.
3. Keep your eyes moving. Don’t stare in any one direction while driving; use your peripheral vision and continuously scan the entire area.
4. Leave yourself an out. Always have an identified escape plan for you and your vehicle.
5. Make sure they see you. Help other drivers be aware of your presence by using the tools at your disposal, including the vehicle’s turn signals, brake lights, headlights and horn.

Continue reading
  11132 Hits
  0 Comments
Todd Horning

Emergency Preparedness for Remote Winter Work Locations

Emergency Preparedness for Remote Winter Work Locations

When utility employees travel to remote backcountry job sites, things can turn bad quickly if they are not prepared to deal with hazards. And a bad situation can become exponentially worse during the winter months, when over-the-snow travel may be involved and additional factors – such as limited or failed communications, difficult terrain, winter storms, avalanche hazards and the potential for cold weather injuries – can potentially wreak havoc.

If employees are to understand how to safely handle these types of emergency situations, employers must diligently train and equip employees well before they travel to a backcountry site. For starters, all workers must be taught how to identify a survival situation. If a problem arises on a job site, lone employees or small crews with limited resources on hand should be trained to notify their operations centers to advise them of the problem, regardless of whether or not the employees believe they can overcome the issue on their own. This is a critical step that is often overlooked. Many times workers believe that walking back to the highway vehicle is the best option if they become stranded in the backcountry due to an equipment failure or operator error. This is almost always the worst thing to do, and many deaths have been attributed to such incidents. Traveling on foot in deep snow – which is incredibly difficult, if not impossible – should be the last choice, as crew trucks should have food, water and heat to last crew members several days of the worst-case conditions.

Beyond the basics of how to identify and address a survival situation, employers should also train employees about communication protocols, survival priorities, the appropriate survival tools to bring to the backcountry, and how to recognize and avoid cold weather injuries.

Continue reading
  8813 Hits
  0 Comments
Thomas Penner

Rope Access for Live-Line Work

Rope Access for Live-Line Work

As a third-generation lineman in the high-voltage utility industry, I can say based on experience that the industry has changed slowly at certain times and radically at others. And yet one thing that has not changed much over the years is the process of performing live-line work on extra-high-voltage (EHV) transmission lines. It still requires the use of live-line tools; it still requires linemen to maintain minimum approach distances; it still requires that linemen possess the knowledge and ability to use tools properly depending on the application, whether it be steel or wood construction; and it still requires access to the energized end of the insulator string or conductor. For many years the method of accessing the “hot end,” as we call it, required the use of live-line-rated aerial lifts, horizontal or vertical live-line insulated ladders or, in some instances, helicopters. Each access method has its own set of intricacies that can be time consuming, labor intensive and costly, but all of the methods have the same end result when the procedure involves the bare-hand method for conducting the maintenance work. Live-line maintenance using the hot-stick method is another topic entirely, so for the purposes of this article, I am only going to address live-line bare-hand work.

Creating a New Tool
Well before OSHA’s final rule regarding 29 CFR 1910.269 and 1926 Subpart V was published in 2014, ushering in new fall protection standards, the live-line bare-hand committee within the company I work for – Tri-State Generation and Transmission, headquartered in Westminster, Colo. – began to think a great deal about providing our linemen with a new tool for performing traditional live-line work. Ongoing environmental and related job site concerns also impacted our thought process at the time. Those concerns included a lack of rights-of-way; earth disturbances caused by the need to access structures and set up aerial lift equipment; the possible need to re-vegetate earth that we disturbed during a job; lack of ability to de-energize transmission lines requiring live-line work; and the costs associated with the use of helicopters for routine live-line EHV maintenance.

The time the committee spent thinking about creating this new tool for live-line work was the beginning of developing Tri-State’s rope access and rescue program for live-line bare-hand work. Basic work methods did exist at the time, but we wanted a rope access program that provided greater training and direction and could include rescue at a level that hadn’t existed before but that we as linemen had always wanted. As time went on, we began to develop a comprehensive process for performing live-line transmission maintenance just as we had always done with ladders, trucks and helicopters, and it was – and continues to be – every bit as efficient, cost effective, rescue enabled and, most importantly, safe.

Continue reading
  9324 Hits
  0 Comments
Jim Vaughn, CUSP

Train the Trainer 101: Understanding Canine Behavior for the Protection of Utility Workers: Part Two

In the last installment of “Train the Trainer 101” (see http://incident-prevention.com/ip-articles/train-the-trainer-101-understanding-canine-behavior-for-the-protection-of-utility-workers), I provided information to help utility personnel understand, in part, why dogs do what they do. In particular, I addressed the pack mentality, dominant and submissive behaviors, and when and why a dog may feel threatened and try to attack. In the conclusion to this two-part article, I will explain how best to respond to unfamiliar dogs and what to do if you are attacked, as well as discuss breeds that are more commonly involved in biting incidents.

How to Respond to Unfamiliar Dogs
A dog’s response to a stranger will vary depending on whether he is with a handler or alone. When the dog is with a handler, remember what you know about the dog and human family relationship. The dog will respond to his handler’s actions as well as his own interpretation of an encounter with an unknown human. If you are the unknown human, speaking in casual tones to the handler, as well as the handler responding in a casual tone, will immediately set the dog at ease.

Workers in residential areas often are attacked by dogs who never posed a threat to people in the neighborhood. One reason behind this may be that workers focused on their task don’t exhibit the same mannerisms as visitors to the home or the people who frequent the property. This “unusual behavior” raises a dog’s suspicion and consequently his alertness level.

If you are walking toward a dog and his handler, stop a few feet away. If you are jogging or moving briskly, that may signal aggression to the dog. Stopping and allowing the handler and dog to approach you tends to reduce the dog’s alertness level.

Continue reading
  7428 Hits
  0 Comments
Danny Raines, CUSP

Voice of Experience: Switching and Working on UD Systems

I was recently asked to provide information about the challenges and opportunities found when working on direct-buried underground distribution (UD) systems. In light of that request, I’ll address those topics in this installment of “Voice of Experience.”

My first opportunity to work on UD systems was as a truck driver operating a trencher in the late 1960s. UD systems were fairly new at the time; lineworkers were learning new techniques, using different types of tools to terminate cables and installing switchable elbows. In that day, some elbows were non-load-break. Back then the work was all about proper use of tools, identifying equipment and following the minimum rules. There were no OSHA regulations. We learned many techniques and work practices the old-fashioned way: through the school of hard knocks.

The challenges that workers faced back then are much the same as they are today, with two exceptions: The industry has more experience installing and operating UD systems, and equipment is now much more technically sophisticated and reliable. For many years, maintenance of UD systems was nonexistent. The common approach was to dig a ditch and put cable in the ground, and industry workers believed everything would last forever. That belief was short-lived; within a few years, external concentric neutrals began oxidizing, and radial and loop-fed systems suddenly became single-conductor, earthen-ground return systems. Driven ground rods at transformers split coil for secondary voltages. There was no neutral conductor for return currents or fault current flow.

Continue reading
  4671 Hits
  0 Comments
Jim Vaughn, CUSP

December 2016 Q&A

Q: We hear lots of opinions on whether a lineworker can lift a hot-line clamp that has a load on it. There is a rule that says disconnects must be rated for the load they are to break. We’ve been doing it forever. Are we breaking an OSHA rule or not?

A: Incident Prevention has answered this question before, but it won’t hurt to revisit it and use the opportunity to explain how OSHA analyzes a scenario to see if it’s a violation. Most objections to operating a hot-line clamp (HLC) under load are based on OSHA 29 CFR 1910.269(l)(12)(i), which states that the “employer shall ensure that devices used by employees to open circuits under load conditions are designed to interrupt the current involved.” There are some utilities that prohibit operating HLCs energized, and there’s nothing wrong with that. Our purpose at iP is not to judge an employer’s operational rules but to enlighten and educate the industry.

On its face, the rule seems to prohibit use of an HLC to break load. Anybody could also argue, then, that any operation of an HLC must be dead-break since HLC manufacturers offer no load-break value at all. However, there are several facets to analyze in this scenario. First, if a non-rated HLC cannot be lifted under load, how about a drop-out switch? We operate those thousands of times a day without injury to the employee, although sometimes an ill-advised operation does smoke a pole top. There is nothing in the rules that prohibits an employer from making an engineering-based decision establishing criteria or protocols for operating HLCs or drop-outs under certain load conditions. Primarily, the employer’s determination would be based on risk to the employee and risk to the equipment. For OSHA, the primary consideration would be risk to the employee. Just as in the working alone rule, if the device is operated by a hot stick from a position that prevented injury to the employee, there would be no violation. Second, what would be the solution in the scenario? If the solution required installing a mechanical jumper and installing a load-break switch, would such an operation add risk exposure to the crew, and would adding the switch really enhance the safety of the operation? At the very worst case, the scenario – operating the HLC under load – could be ruled a de minimis violation. De minimis is the level of violation where OSHA recognizes that a direct rule was violated, but there was no other way, or no safer way, of executing the required task, and there was no risk to the employee.

Continue reading
  5086 Hits
  0 Comments
Kate Wade

December 2016 Management Toolbox

December 2016 Management Toolbox

5 Ways to Stop Procrastinating

There are myriad reasons why people put off doing the things they should do, or need to do: lack of time, lack of interest and lack of financial resources are a few that spring to mind. And when it comes to critical actions – such as making a career change or having a difficult conversation with a loved one – fear is often the greatest reason underlying a person’s hesitation to make a move. The causes of procrastination are not difficult to figure out, but if you regularly find yourself putting off work or other important tasks, following are five helpful ways to break the habit.

1. Start with small steps. It is not uncommon to procrastinate when you are staring down a complex job. If you feel overwhelmed by a project you need to complete, break it down into a series of smaller, more manageable tasks. Then, create a timeline and assign a deadline to each task. Seeing your work as a series of steps, each with its own due date, will help to calm your mind, keep you on track and provide encouragement that the work can be done.

2. Do the most difficult work first. Sometimes procrastination gets confused with laziness, but what commonly happens is that people put off doing the most challenging or unpleasant parts of their project in favor of doing other tasks that take less time, are easier to complete or are more enjoyable to do. That approach is understandable, but try thinking of the process like climbing a mountain. Once you make it through the toughest work – trekking to the top – you’ll feel a real sense of accomplishment, and the rest of the work – going back down the mountain – should feel like less of a struggle, comparatively speaking.

Continue reading
  4693 Hits
  0 Comments
Jordan Hollingsworth, CHST, CSP, CUSP

Safety Best Practices for Outage Season

Safety Best Practices for Outage Season

Football season is here, and hunting season is right around the corner. That means it’s also outage season for the electric power industry.

Planned outages allow utilities to take equipment out of service for maintenance, replacement or new construction. The timing is dictated by the utility owners and the regional transmission organizations that oversee the power grid. Planned outages can last from 15 minutes to months, and they can be continuous or intermittent. Most occur late in the year because loads are lower than during the peak summer and winter months. In addition, utilities need to use up their capital budgets for the year.

The height of outage season is between Thanksgiving in the U.S. and Christmas. With the rush to perform outages as quickly as possible, they often entail 12- to 16-hour workdays and seven-day workweeks for crews. Given the pace and intensity, along with the weather conditions, the potential for injuries is significant. To combat these risks, following are a number of best practices that can be used in your organization to help keep crews safe during outage season.

Site-Specific Safety Plan
Safely performing an outage begins with the crew developing a comprehensive, site-specific safety plan that – at a minimum – addresses manpower, equipment, logistics, training and emergency response. Because planning for most outages takes months, there’s plenty of time to thoroughly address safety.

Manpower
When developing the safety plan, establish how many workers will be needed to perform tasks safely and efficiently. In particular, consider work hours, because expecting workers to put in too many hours increases the risk of something going wrong on the job. Do you need 10 employees to perform 16-hour shifts seven days a week, or is it more prudent to ask 20 employees to work 10-hour shifts for five days?

Continue reading
  9748 Hits
  0 Comments
Phillip Ragain

Assimilating Short-Service Employees Into Your Safety Culture

Assimilating Short-Service Employees Into Your Safety Culture

Culture is one of the most significant drivers of an organization’s safety performance. It can take time to build a safety culture, and it also takes time for employees to assimilate into an existing culture after beginning work for an organization. This poses a serious challenge for organizations that regularly scale to meet project demands. An influx of short-service employees (SSEs) often coincides with an increase in incidents. While there are a number of reasons for this – such as poor hazard recognition – one significant reason is that SSEs have not yet assimilated into the existing culture’s standards of safe operations. Despite efforts to overcome this problem, many companies continue to report that it remains one of their greatest challenges. After examining SSE programs implemented by different organizations, my colleagues at The RAD Group and I have identified criteria for an SSE program that helps new employees more effectively adapt to a company’s safety culture.

The Root of the Problem
Once a strong culture is in place, it is like a hidden force guiding people’s decisions to work safely. However, it takes time for people to fall under the influence of a safety culture, and in the meantime they may work in a way that does not align with their employer’s standards. The root of the problem, of course, is that SSEs by definition have not been in the organization long.

To better understand and respond to this enduring challenge, it helps to address three questions:
1. How do people assimilate into a culture?
2. Why do some SSE programs fall short?
3. What kind of program would more effectively assimilate SSEs into a safety culture?

Continue reading
  10829 Hits
  0 Comments

KNOWLEDGE, INSIGHT & STRATEGY FOR UTILITY SAFETY & OPS PROFESSIONALS

Incident Prevention is produced by Utility Business Media, Inc.

360 Memorial Drive, Suite 10, Crystal Lake, IL 60014 | 815.459.1796 | This email address is being protected from spambots. You need JavaScript enabled to view it.
© 2004 - 2019 Incident Prevention. All Rights Reserved.