Utility Worksite Safety Articles

Jim Vaughn, CUSP

Train the Trainer 101: Safety Cops and the Continuum of Safety

Words have power. We confirm that every day when we examine why people do what they do. Communication is often the root cause of accidents, particularly how the receiver interprets what he or she hears. That communication is not always something said in the moments before an incident; it can occur days, weeks or months in advance. I have discussed this issue with behaviorists on a number of occasions, and I am convinced that some of the words I – and many others – have repeatedly heard over the years have served to limit our success in the quest for a strong, positive safety culture.

The real problem is that what we say to soften our approach and encourage safe work has the exact opposite effect of our intention. Many of us – and yes, I have done it, too – don't want to be criticized or worse when we ask crews to do something differently. Sometimes we think our request is going to sound accusatory or like an insult to their professional skill level. Other times we know from past experience that the issue that needs to be addressed is contentious. Maybe we worry that our message is going to be challenged, or perhaps we are not confident in our delivery. There are any number of reasons, but it boils down to this: Safety professionals are human, and humans don't want to be challenged or rejected. Therein, as they say, lies the problem.

Continue reading
Recent Comments
Guest — Karen Phelps
This is Karen. Testing the comments.
Friday, 19 February 2016 11:46
Guest — Jim Vaughn
So it does! great Article by the way!
Friday, 19 February 2016 11:57
  6646 Hits
  2 Comments
Danny Raines, CUSP

Voice of Experience: Hand and Skin Protection for Electric Utility Workers

With the recent changes to the OSHA standard, many employers are working on what rules apply – the arc flash standard or the PPE standard – and how to comply with them. Part of the issue is determining how many types of protection are needed and what types of protection are appropriate.

To begin, OSHA’s requirements for all personal protective equipment can be found in 29 CFR 1910 Subpart I. Rules specific to hand protection can be found in 1910.138. They read as follows:

1910.138(a)
“General requirements. Employers shall select and require employees to use appropriate hand protection when employees' hands are exposed to hazards such as those from skin absorption of harmful substances; severe cuts or lacerations; severe abrasions; punctures; chemical burns; thermal burns; and harmful temperature extremes.”

Continue reading
  5883 Hits
  0 Comments
Jim Vaughn, CUSP

February 2016 Q&A

Q: I work for a small utility and am new to my safety role. Recently I have been wading through the Federal Motor Carrier Safety Regulations (FMCSR) in an attempt to understand my responsibilities with regard to testing CDL drivers. Can you briefly explain these responsibilities?

A: FMCSR 391.31 requires the employer to ensure a driver is competent by means of road testing. The FMCSR allows a valid commercial driver’s license as evidence of competency (see FMCSR 391.33). If the employer accepts the evidence of the driver’s competency, the employer does not have to road test the driver. Rule 391.33(c) allows the employer to conduct a road test if they so choose even if the driver has a current license and certificate of competency. If the employer intends for the driver to haul double or triple trailers, they are required to conduct a road test. The road test criteria are listed in FMCSR 391.31(c).

Continue reading
  7016 Hits
  0 Comments
Chris Grajek, CRSP, CUSP

Stringing Best Practices: Mesh Grips vs. Preforms

Stringing Best Practices: Mesh Grips vs. Preforms

When you ask lineworkers what differentiates their work from general construction, it’s not surprising that they will typically say they work with big lines at high voltages. Lineworkers take pride in keeping lines up and fixing them when they come down. We know that lines do come down inadvertently, and we also know that the losses resulting from such incidents can be substantial. No amount of regulation will combat these problems, so that’s where best practices come into play. Best practices establish the most common methods to achieve operational success within the parameters of regulations, provide work techniques inclusive of the collective trade experience and debunk field-level work practices that counter those efforts.

Each year thousands of miles are strung, and many lineworkers have likely wondered how many lines have dropped due to misaligned or misapplied practices. In fact, we asked this same question at Allteck, which prompted research into the matter; our goal was to compile the best working knowledge about some stringing problems commonly encountered by workers in the field. The prevention strategies regarding this topic appeared limited, and most stringing information related to post-incident countermeasures, such as the bonded and grounded stringing site.

Continue reading
  16498 Hits
  0 Comments
Miranda Allen

RF Safety for Utility Workers

RF Safety for Utility Workers

Utility workers could be exposed to radiofrequency (RF) radiation every day and not even be aware of it. With today’s telecommunications explosion, even utility poles are housing cellular systems such as antennas and distributed antenna systems. And yet, the rapid growth rate of RF technology does not change the fact that we are still obligated to follow the laws and comply with OSHA and Federal Communications Commission (FCC) requirements, especially when dealing with RF radiation exposure limits.

Required Training
Not surprisingly, training is the best route to both RF safety and rule compliance. Anyone who enters a telecom tower site, or who works around antennas located on or near utility poles and building rooftops, must have received training that meets the requirements of OSHA 29 CFR 1910.268(c), and they must also be properly protected from any RF radiation emitted from antennas. Appropriate RF safety training will teach workers to recognize RF radiation hazards and control their exposure.

Unfortunately, many utility workers have not yet been fully trained in RF safety because their employers do not realize the training requirements nor the true dangers of RF radiation. Whatever the case, now is the best time to ensure workers complete training. They must know what they could be potentially exposed to and how to protect themselves. In fact, in the FCC’s June 4, 2013 final rule (see www.gpo.gov/fdsys/pkg/FR-2013-06-04/pdf/2013-12716.pdf), the commission states that individuals “must receive written and/or verbal information and notification (for example, using signs) concerning their exposure potential and appropriate means available to mitigate their exposure.” Additionally, the FCC stated, individuals exposed as a consequence of their employment must have appropriate training regarding work practices that will ensure that that they are “fully aware of the potential for exposure and can exercise control over their exposure.” The update goes on to note that education is the key to a successful RF compliance program.

Continue reading
  10824 Hits
  0 Comments
Jim Vaughn, CUSP

Train the Trainer 101: Practical Underground Safety: Handling Neutrals and Rescue

Over the years I spent as a lineman, I did my share of underground installation and maintenance work. During my years in safety, I have seen the expansion of safety processes associated with underground, especially in response to the most recent OSHA changes. Not all of the changes have been effective, and that’s why we’re now going to spend some time addressing several underground safety questions Incident Prevention frequently receives. We’ll look at the rules and practices and what works from a practical perspective.

Handling URD Neutrals
This will not come as news to most of you, but for more than 60 years we have been splicing URD concentric neutrals during underground repairs without isolating the neutral or bonding across the open neutral in the ditch. That is something no lineworker would do on an overhead neutral, yet hardly any readers will be able to recall a time when someone was injured making neutrals in URD. Now, as OSHA’s language and expectations are more defined regarding grounding for personal protection, industry better recognizes current flowing in grounded systems, and employers are looking for ways to create equipotential and grounding during underground maintenance. For the most part, it’s not going well. The two questions I hear most are, why should we ground and how do we do it?

Continue reading
  10311 Hits
  0 Comments
Danny Raines, CUSP

Voice of Experience: PPE Regulatory and Consensus Standard Requirements

OSHA 29 CFR 1910 Subpart I and 1926 Subpart E cover the requirements of personal protective and lifesaving equipment. With the publication of OSHA’s final rule in April 2014, the general industry and construction standards are now essentially the same for electric utilities, and there are few if any differences in the PPE required by each standard.

In addition to OSHA’s regulatory standards, there are ANSI/ASTM and other consensus standards that govern the manufacturing, type and ratings for all PPE. These consensus standards change as the industry evolves and PPE improves. All PPE should meet the most recent standard requirements. In the remainder of this article, we will examine OSHA’s PPE requirements for electric utility workers, as well as some of the latest consensus standard requirements.

Continue reading
  6191 Hits
  0 Comments
Jim Vaughn, CUSP

December 2015 Q&A

Q: I’ve been reading ASTM 855, IEEE 1048 and the National Electrical Code, and I’m a little confused by the practice of grounding through a switch. Can you help me better understand this?

A: In transmission/distribution applications, there is no issue with grounding through a switch. To explain, we always have to ask whether the issue is grounding through (in the path) a switch or grounding (by way of closing) a switch. The application may sound the same, but it depends on which standard you read. Our subject matter experts think the confusion lies in the well-known NEC rules, which require permanent installations to have a connection-free path for the ground electrode conductor at the service entrance of an electrical system. According to the code, grounds – except in some specialty connections – cannot be disconnected through operation of a switch or breaker contact. ASTM 855 is an equipment manufacturer's standard that has no application to utility practices in the field other than being used as a guide for shop construction, sizing, rating and assembly of personal protective grounds. IEEE 1048 does address the value of having the grounding switches closed when de-energizing a system for work; that ground switch is a very low-resistance path to earth at the feeder or transmission bus source that will lower fault current in an accidental or inadvertent energizing of the source. The ground switch in the station is also a path to ground that will divide and help reduce the amount of induction current on a circuit. Closing the switch can help reduce induction current at a work location, depending on how far apart the work location and the ground switch are.

Continue reading
Recent Comments
Guest — Brian Ergga
I believe the question relates to grounding through a switch. Another words, working on one side of a switch when the other side i... Read More
Friday, 01 January 2016 17:16
Guest — Jim Vaughn
I think we agree, we certainly agree with your observation. Grounding is for the purpose of tripping a protective device. Equipo... Read More
Monday, 04 January 2016 09:52
Guest — Brian Erga
Question on OSHA's requirements for leather gloves. OSHA 1910.269(l)(8)(v)(A) state: "Arc-rated protection is not necessary for th... Read More
Friday, 01 January 2016 17:32
  10389 Hits
  5 Comments
R. Scott Young, CUSP

Fundamentals of Substation Rescue Plans

Fundamentals of Substation Rescue Plans

I’ve worked in substations for most of my adult life, and I’ve picked up a few things along the way. Some were the result of good experiences, while others I learned through less than ideal circumstances. In this article, I want to share with you what I learned from my first experience with confined space rescue in a substation.

It was mid-August of 1983 in Florida and the outside temperature was in the high 90s. Inside the 69/13-kV transformer, the temperature was well over 100 degrees. Two journeymen were conducting an inspection inside the transformer when they discovered a problem in the winding. They called the lead man in to take a look. One of the journeymen climbed out of the transformer and the lead man climbed down to the bottom. He was in there for about 20 minutes, and as he began to climb out, his leg got stuck and he soon became claustrophobic and panicky.

Continue reading
  12434 Hits
  0 Comments
Randi Korte, CUSP

Investigating Industrial Hygiene at Salt River Project

Investigating Industrial Hygiene at Salt River Project

At Salt River Project, a large utility based in metropolitan Phoenix, there are a great variety of jobs, situations, risks and exposures that must be addressed, assessed and controlled. Journeymen lineworkers labor in heat approaching 120 degrees on the desert floor, while hydrologists trudge around in near-zero-degree weather to examine snowpack on the mountainous Mogollon Rim. A pressman needs a hearing assessment to judge the impacts of a six-color press, while electronics technicians must be evaluated for radio-frequency exposure from telecommunications equipment. A warehouseman at a power plant in the high desert prairie requires education about hantavirus exposure from deer mice, while a call center representative needs an ergonomic evaluation to guard against back and joint issues.

So, while the term “industrial hygienist” may conjure visions of a W. Edwards Deming-like technician scrutinizing manufacturing processes, nothing could be further from the truth at SRP. Industrial hygiene encompasses scores of jobs within the water, power and telecommunications utility that serves much of central Arizona. Employees work in and around dams, irrigation ditches, power plants, high-voltage lines, state-of-the-art facilities and legacy buildings dating back to the Truman administration. Industrial hygienists assess risks for jobs that didn’t exist a year ago as well as occupations that have been in existence since SRP was founded in 1903.

Continue reading
  11635 Hits
  0 Comments
Jim Vaughn, CUSP

Train the Trainer 101: Practical MAD and Arc Flash Protection

Author’s Note: Before we get to the article, I want to thank the members of Incident Prevention’s editorial advisory board for their help in assembling this installment of “Train the Trainer 101.” They help me keep my head on straight, especially when I have ideas that are way outside the box. Even though I am also on the board, they still hold me to high standards of accountability and accuracy. These folks are a great asset to iP and make better writers of everyone who contributes to the publication.

Over the past year, iP subject matter experts have fielded many questions about how to meet the minimum approach distance (MAD) and arc flash (AF) rules published by OSHA in the 2014 final rule regarding 29 CFR 1910.269 and 1926 Subpart V. The questions about MAD came from a variety of perspectives, but they were primarily submitted by contractors trying to facilitate the information transfer now required by 1910.269(a)(3) and 1926.950(c). Without information about a system’s fault characteristics, the contractor cannot determine MAD, either by calculation or via the tables in 1910.269 Appendix B and Appendix B to 1926 Subpart V. That means the contractors must fall back on the sometimes absurd provisions of alternative tables R-7 through R-9. In my work for a contractor, we have found that those alternative tables can make some work – particularly transmission work – very difficult, if not impossible, especially when faced with compact lattice structures or old construction standards on wood poles. For AF programs, that lack of information may be overcome effectively by experienced guesswork, but compliance by guesswork cannot be defended when the compliance safety and health officer asks how you determined the AF compliance requirements.

Continue reading
  11372 Hits
  0 Comments
Danny Raines, CUSP

Voice of Experience: Clearing Up Confusion About 1910.269

It’s now been 18 months since OSHA’s final rule regarding 29 CFR 1910.269 and 1926 Subpart V was published. For the most part, the dust has settled and the industry has started to adjust to the requirements of the new standard. However, questions still abound regarding certain issues, and I’d like to address two of them – employee training and host-contractor information transfer – in this installment of “Voice of Experience.”

Continue reading
  8599 Hits
  0 Comments
Jim Vaughn, CUSP

October 2015 Q&A

Q: Is equipotential grounding now a personal protective grounding method required by OSHA?

A: The answer is yes, even though OSHA doesn’t specifically say so in terms we easily understand. The terminology isn't OSHA's fault. As an industry, we adopt certain familiar ways of describing or discussing things and simply don't recognize what OSHA is trying to communicate unless we do some diligent research. In 29 CFR 1910.269(n)(3), OSHA requires arrangement of grounds to protect employees without using the word “equipotential.” The title of the rule, however, is “Equipotential zone.”

The full text of 1910.269(n)(3) states, “Temporary protective grounds shall be placed at such locations and arranged in such a manner that the employer can demonstrate will prevent each employee from being exposed to hazardous differences in electric potential.” By definition, that is equipotential grounding.

Continue reading
  6675 Hits
  0 Comments
Jarred O'Dell, CSP, CUSP

N95 Filtering Face Pieces: Where Does Your Organization Stand?

N95 Filtering Face Pieces: Where Does Your Organization Stand?

When it comes to following health and safety standards, nearly every worker tries to do the right thing. And when workers deviate from standards and best practices, it is typically due to lack of knowledge and proper training. One industry topic that is not yet fully understood and continues to be heavily debated is the N95 filtering face piece, in particular its uses and program requirements. In response, this article seeks to assist those who are involved with the development and enforcement of their organization’s voluntary respiratory protection policy.

To begin, there are two reasons why N95 face pieces are especially relevant to readers right now.

First, OSHA is currently in the process of revising the standard on crystalline silica dust, which is a common utility and construction industry hazard that is oftentimes mitigated by N95 face pieces. OSHA’s fact sheet on crystalline silica (see www.osha.gov/OshDoc/data_General_Facts/crystalline-factsheet.pdf) describes the substance as “a basic component of soil, sand, granite, and many other minerals” that workers may encounter when sandblasting, jackhammering, drilling rock or working with concrete. Clearly, many utility industry workers are exposed to most of these activities – if not all of them – on a recurring basis.

Continue reading
  7293 Hits
  0 Comments
Keith Lindemulder

Stepping Up Steel Safety Education

Stepping Up Steel Safety Education

It’s estimated that between 2 million and 4 million utility poles are replaced annually in the U.S., and in almost every region of the country, many of those replacement poles are now made of steel. In fact, more than 1 million steel distribution poles have been installed by electric utilities across the country in the last decade. That number is expected to rise considerably as utilities strive to keep up with the need for new lines, replace aging and damaged poles and harden existing lines.

The increased use of steel utility poles in distribution lines has created a need for new training and coursework for student, apprentice and journeyman lineworker programs nationwide. For years, the Steel Market Development Institute (SMDI) has developed training standards and guidelines, and in 2013 it teamed with several respected leaders in utility safety and line work training to update and bring new materials to the trade. Among the organizations SMDI collaborated with are the Institute for Safety in Powerline Construction (ISPC), based in Alexandria, La., and Metropolitan Community College (MCC) in Omaha, Neb., which offers a leading utility line technician program. Through these partnerships, steel pole training programs have become well-established, and both coursework and program participation continue to evolve.

Continue reading
  7072 Hits
  0 Comments
Brian S. Hope, ASP, CSP, CUSA

Rigging Fundamentals for Utilities

Rigging Fundamentals for Utilities

Over the past 20 years I have had the great opportunity to travel the country observing everyday safety practices in the utility industry. During this time it has become clear to me that, more often than not, employees are practicing inadequate rigging techniques that put them and their co-workers at risk on a daily basis. These poor practices are being perpetuated from one generation of riggers to the next. Employees who learned improperly from previous trainers go on to train new employees in the same fashion. It seems that a number of workers have bought into the dangerous idea that unsafe practices are acceptable as long as they don’t result in a serious accident. This cycle of carelessness and endangerment is unacceptable and can only be stopped through adequate training and reinforcement of proper rigging techniques. We must revisit the most fundamental principles of rigging safety to build the foundation necessary to change our current culture. In this article I will discuss three of the most basic aspects of rigging – equipment selection, inspection and proper use – and I look forward to continuing the conversation when I present “Basic Rigging Fundamentals” on September 30 at the iP Utility Safety Conference at ICUEE.

Continue reading
  10654 Hits
  0 Comments
Samy Faried

Arc Flash Mitigating Technologies and the OSHA Final Rule

Arc Flash Mitigating Technologies and the OSHA Final Rule

On April 11, 2014, OSHA issued the final rule regarding 29 CFR 1910.269 and 1926 Subpart V. The final rule included modifications that address minimum approach distances, fall protection systems and hazards of electric arcs. Since the publication of the rule, there have been an extensive number of articles published that detail changes to 1910.269 and 1926 Subpart V. Those articles focus on explaining the changes but most lack information about arc flash mitigating technologies.

This article focuses on current technologies available to minimize and prevent exposure of workers to arc flashes. Employers must ensure workers are provided the necessary protection against these flashes, as it can mean the difference between life and death. According to NFPA 70E, arc flash incidents occur five to 10 times each day and account for 400 fatalities each year. Additionally, the Electrical Safety Foundation International has reported that more than 2,000 workers are treated annually for flash-related burns. The severity of a flash and the related severity of injury primarily depend on the magnitude of the arcing current and the duration of exposure. A typical three-cycle circuit breaker will interrupt fault currents in 50 milliseconds. Exposure to a temperature of 205 degrees Fahrenheit for 100 milliseconds may cause a third-degree burn, which will cause skin to fall off and may result in death.

Continue reading
  10484 Hits
  0 Comments
Jim Vaughn, CUSP

Train the Trainer 101: Practical Personal Protective Grounding

In the last 10 years I have consulted on dozens of induction incidents, eight of which resulted in fatalities. There were commonalities in each one. Just about every Incident Prevention reader will agree that one of the topics that receives the most attention across the power industry – in writing, training and conversation – is personal protective grounding (PPG). Not a week goes by that I don't email or talk to someone about PPG and, in particular, about dealing with induction.

At iP we discuss and share information as well as news about incidents involving induction, and yes, they do occur at an alarming rate. I can't point to any empirical evidence, but my colleagues and I think we, as an industry, are the reason for the confusion over PPG issues. We have been slow to evolve from grounding for the purpose of stabilizing electrical systems and protecting equipment, to grounding for the protection of workers. Even the language of the OSHA standard, to some, seems vague, contradictory or too technical. The ANSI standards establish sound procedures for protective arrangements, but they are not training resources for craft workers. Now, as infrastructure loads and system voltages continue to increase, there are corresponding hazards that were not even discussed just a generation ago. Those hazards are resulting in incidents and, worse, preventable incidents that risk the lives of power-line workers.

Continue reading
  12774 Hits
  0 Comments
Danny Raines, CUSP

Voice of Experience: Power Generation Safety and the OSHA Update

I have never worked in a generation plant, but I have visited many plants during my years of working with utilities. My experience has been in safety and skills training for transmission and distribution systems. I have also worked with generation employees on OSHA and DOT projects, and I am now in the process of helping a company revise their OSHA 1910.269 training program, including the portion that addresses 1910.269(v), “Power generation.” I have to say, I was surprised by the absence of changes to 1910.269(v) in the 2014 OSHA update. The revised section reads almost word for word the way it did in the original 1994 standard. As far as the changes that were made, they consist of a few clarifications and the addition of “the employer shall ensure” to several paragraphs. That language, which is found throughout the entire 2014 1910.269 standard, removes any implied directives and expectations. It also helps to ensure the employer’s accountability and responsibility for employee safety and safe work practices.

Continue reading
  8191 Hits
  0 Comments
Jim Vaughn, CUSP

August 2015 Q&A

Q: I'm wondering about an issue with a third-party safety analysis required by one of our clients. We are required to satisfy their safety requirements, including creating programs and safety manual changes worded to meet their criteria. I have issues with the required changes because they don't fit into our safety program.

A: You are not alone in your concerns. OSHA issued a warning about this exact topic, and it was a reason for changing the language in the proposed rules from June 2005. In the proposed rule, 29 CFR 1926.950(c) required contractors to follow a utility’s work rules as if they were statutory OSHA rules. Further, in the preamble to the proposed rules, OSHA clearly indicated the intent of the new rule’s language was to leverage utilities under the Multi-Employer Citation Policy in order to improve contractor safety. All of this created a concern for utilities that gave rise to third-party evaluations. The purpose seems to be both a means of qualifying the contractor and also providing a buffer between the contractor’s performance and the utility’s newly proposed responsibilities. For those readers who are not familiar with this process, the third party signs on to represent the utility in the evaluation of contractors. The utility also signs on to the process. The utility’s contractors, or proposed contractors, pay to join the third-party program and work to attain an acceptable rating for their safety program.

Continue reading
  5430 Hits
  0 Comments

KNOWLEDGE, INSIGHT & STRATEGY FOR UTILITY SAFETY & OPS PROFESSIONALS

Incident Prevention is produced by Utility Business Media, Inc.

360 Memorial Drive, Suite 10, Crystal Lake, IL 60014 | 815.459.1796 | This email address is being protected from spambots. You need JavaScript enabled to view it.
© 2004 - 2020 Incident Prevention. All Rights Reserved.