Incident Prevention Magazine

Phillip Ragain

The Human Error Trap

Web-shutterstock_517190599

The agitation of the managers sitting in the meeting room is palpable. The safety director sits stiffly at the conference table. Everyone is overwhelmed by a hurricane of thoughts. "We did everything we could, right?" Conjectures whirl. Voices surge. "We've spent the last three years installing a safety management system to keep this sort of thing from happening. It was textbook!”

These leaders wonder to themselves, “Did I do something that led to this?" But soul-searching eventually gives way to frustration as a voice stands out in the room: "What were they thinking out there?"

People grab hold of these words and their implication – that the incident occurred because a handful of people in the field did something wrong. It seems a simple matter of fact that explains what happened and points to what must be done next. "We will review our policies, retrain everyone, hold people accountable and get rid of those we can't trust." And it works … until the next storm blows in.

This scenario has played out countless times, with an array of casts and in the aftermath of many different kinds of events. Some are small-scale events, like an employee failing to lock out equipment before servicing it. Others are catastrophic events, like an exploding chemical plant.

My colleagues at The RAD Group and I propose that the thought process represented here is a trap, and one that people at all levels of an organization can fall into quite naturally. We call it the “human error trap,” and when organizations become ensnared, they find themselves unwittingly stuck in a status quo of safety.

Continue reading
  7655 Hits
  0 Comments
Lee Marchessault, CUSP

Making Sense of Protection Requirements for Open-Air Arc Flash Hazards

Arc-Flash-Web

Electric utility workers face complex, high-risk electrical hazards nearly every day. Information about shock hazards – which may come from impressed voltage, residual energy, induction, objectionable current flow in a grounding system or stored energy – has been taught to many of us for quite some time, as have the methods of assessing them.

On the other hand, arc flash hazard assessments are still relatively new to us. In the past, most of us knew that an arc flash could potentially occur during the course of performing our tasks, but the level of the flash and the PPE requirements – other than wearing 100 percent cotton – were not seriously considered in our day-to-day activities until approximately 15 to 20 years ago. To provide more concrete guidelines, OSHA published new regulations in April 2014, with more recent enforcement dates. Instead of making a best guess about PPE, the industry now has a reasonable approach to providing adequate PPE for utility employees who are tasked with performing open-air work. Once a utility completes the required arc flash analysis, develops a policy based on the analysis results and adequately conducts training for affected field personnel, the job of assessing risk and determining PPE levels can easily be incorporated into the daily job briefing. The goal is to make the assessment data easy to access and understand in order to provide effective protection for all workers.

Causes and Severity Levels of Arc Flash Events
An arc flash is the result of either a short circuit during which two energized parts of different potentials (phases) make contact, or a ground fault where an energized part and a grounded conductive part of a different potential make contact. An arc flash event may be caused by a failure of electrical apparatus, potentially due to lack of maintenance, or by worker error, perhaps due to an employee moving conductive parts near energized parts or leaving conductive tools in an energized work area. It’s important to note that differences in potential must always be effectively isolated by distance (air) or insulated barriers.

Continue reading
  7351 Hits
  0 Comments
Naira Campbell-Kyureghyan, Ph.D.

Injury Risks Associated with Climbing in the Wind Energy Generation Industry

Figure-3D-Web

The growth of the wind energy generation industry in the U.S. has been phenomenal. According to the American Wind Energy Association, at the end of 2016 there were over 52,000 utility-grade wind turbines operational in more than 40 states, with a total capacity of 83,000 megawatts. The Global Wind Energy Council’s latest report shows that the U.S. has the second-largest wind power capacity, after China, with 16.9 percent of the world total, and employs over 100,000 people directly or indirectly. As the number of wind turbine towers grows, so does the number of people involved in their maintenance and repair. In 2015, the U.S. Bureau of Labor Statistics projected that employment of wind turbine service technicians would grow 108 percent between 2014 and 2024. There were approximately 4,400 wind turbine service technician jobs as of 2014.

Wind turbine tower heights also are increasing, with the tallest tower currently in the U.S. measuring 379 feet hub height, and even taller towers have been installed elsewhere in the world. While some towers are outfitted with service lifts, in the majority of towers personnel must climb fixed ladders to perform both routine and unusual operations. The increasing numbers and heights of towers mean more workers climbing ever greater distances.

Research studies conducted at the University of Wisconsin-Milwaukee (UWM) that have specifically investigated the renewable energy sector, including wind power generation, along with data from OSHA and the Bureau of Labor Statistics, have identified multiple risks to workers as a result of climbing fixed ladders. Strains and sprains, falls, overexertion and even fatalities were reported to be possible direct consequences of climbing and working at heights during both the construction and maintenance of wind turbines. Indirect risks also were identified, including potentially being electrocuted from contact with high-voltage cables and being struck by an object or caught between objects. Although power generation injury statistics are not separated by fuel source, 2015 Bureau of Labor Statistics’ data indicates that there were three fatal falls in the power generation industry, and 550 falls with nonfatal injuries. Data from the United Kingdom shows 163 total accidents in the wind power industry in 2016, including five fatal accidents. This data generally is assumed to vastly underreport the actual numbers, which may be 10 times higher.

Continue reading
  6549 Hits
  0 Comments
Jim Vaughn, CUSP

Train the Trainer 101: Training and Verification Requirements for the Safety of Electric Utility Workers

A number of years ago I investigated a pole-top flash that took place during a transfer. The flash occurred when an improperly installed blanket left a dead-end flange exposed on the backside of the metal pole-top. During untying, the tie-wire contacted the exposed flange. No one was hurt. The issue was the lineman’s selection and installation of the blanket. The foreman assumed the lineman was experienced and competent to perform the three-phase transfer with minimal instruction. The problem was the lineman had spent the last several years on a service truck, had little transfer experience and had never worked a steel distribution pole. The foreman’s assumption was based on the fact that the lineman came from the IBEW hall. Even though they had never met, he assumed the lineman was sufficiently experienced – and so the root cause for the incident was established.

Training and verification of training for new, already-trained employees is another subject that has caused headaches for those professionals charged with OSHA training compliance and the employer liability that goes with it. OSHA, just like CanOSH, the agency’s Canadian counterpart, knows that training plays a huge role in incident prevention. It should be obvious that training prevents incidents, but the investigation of incidents across the continent proves that is not so. I have long said that the quality of your safety program and all of the component procedures, rules and policies that go with it, no matter how innovative and well-written, are only as good as the training you provide to the workforce. A safety program is supposed to protect the workforce first and the employer second. How can that happen if the workforce doesn’t know what’s in the program? And if the workforce doesn’t know what’s in the program, how does the employer expect the safety program to protect the employer?

Continue reading
  7687 Hits
  0 Comments
Danny Raines, CUSP

Voice of Experience: Qualified and Task-Specific Electrical Worker Training

The revised OSHA 29 CFR 1910.269 standard has now been in place for three years. In making the revisions, OSHA replaced older, passive language that left much to be understood with more objective language that clarifies the meaning and intent of the regulation. The standard is now easier to understand and sets the expectations for employers and employees.

There were some major changes made to the standard, as we all know. Several more subtle changes also were included and have been discussed much less, but they still have had a significant impact on the regulation. In this installment of “Voice of Experience,” I want to focus on one of these more subtle changes that I believe has a tremendous effect on the training requirements found in 1910.269(a)(2). The 1910.269 standard published in 1994 was straightforward, describing what was required in order for an employer to determine that an employee was a qualified worker. By and large, the industry believed that if an employee had the required training, he or she could be determined to be qualified. Now, per paragraph 1910.269(a)(2) of the revised 2014 standard, all employees performing work covered by the section shall be trained as follows:
• Each employee shall be trained in, and familiar with, the safety-related work practices, safety procedures, and other safety requirements in this section that pertain to his or her job assignments. (1910.269(a)(2)(i)(A))
• Each employee shall also be trained in and familiar with any other safety practices, including applicable emergency procedures (such as pole-top and manhole rescue), that are not specifically addressed by this section but that are related to his or her work and are necessary for his or her safety. (1910.269(a)(2)(i)(B))
• The degree of training shall be determined by the risk to the employee for the hazard involved. (1910.269(a)(2)(i)(C))

Continue reading
  3237 Hits
  0 Comments
Jim Vaughn, CUSP

June 2017 Q&A

Q: We have a group reviewing our personal protective grounding procedures, and they are asking if we should be grinding the galvanized coating off towers when we install the phase grounding connections. What are your thoughts?

A: In addition to your question, we also recently received another question about connecting to steel for bonding, so we’ll address both questions in this installment of the Q&A. Your question is about the effectiveness of grounding to towers, and the other question is about the effectiveness of EPZs created on steel towers. We’ll discuss the grounding question first and then move on to the EPZ question.

As to grounding effectiveness, we have two thoughts here – one simple and one that likely will raise more questions than we can resolve in these pages.

The simple thought is this: Consider grounding to the circuit static. It’s difficult to reach but doing so makes it easier to create an electrical connection. Using the system static shares current with adjacent structures and reduces current on the structure being worked. Dividing current among adjacent structures also reduces ground potential’s risks to workers at the foot of the tower. See the following Q&A regarding EPZ if you are grounding to the static.

As to connecting to the tower, grinding off the galvanized coating opens the underlying steel to corrosion and would need to be replaced after the operation. We have asked how utilities make connections and found that most use a flat clamp to a brushed plate or insulator bracket, or a C-clamp to a brushed bolt or step. Either method is a good one. Others follow one of the recommendations in IEEE 1048, “IEEE Guide for Protective Grounding of Power Lines,” 9.2.1.1 for lattice using a ground cluster. The cluster serves two purposes: providing a clamping connection and keeping the clamps close together.

Fortunately, the structure connection can be installed by hand, making the cleaning and mechanical security of the connection pretty reliable. There are several considerations to discuss that should be part of the training provided to lineworkers who make these connections.

Continue reading
  2283 Hits
  0 Comments
David McPeak, CUSP, CET, CHST, CSP, CSSM

Frontline Fundamentals: Responsibility for Safety

You are responsible for your own safety and the safety of others.

Most people would say they agree with that statement, but do their actions reflect their agreement? Let’s consider that question in the context of the following incident investigation.

The Incident
Bob, who works in shipping and receiving, has just cut himself with his pocketknife while attempting to cut a zip-tie off a package. Randy, the shipping and receiving manager, is Bob’s immediate supervisor. Pam is Bob’s co-worker. Ron is the facility’s safety supervisor and is interviewing Bob, Randy and Pam as part of the investigation.

Bob’s Interview
Ron: Can you tell me what happened?

Bob: We have a specially designed box cutter we use for cutting zip-ties. It works really well, but we lost it. I told Randy we lost ours and he said he would get us another one. That was three weeks ago. What am I supposed to do, not work? I have a job to do, and I’m going to make sure it gets done.

Ron: What could we do to prevent this from happening again?

Bob: We need the right tools for our job. Someone needs to make sure we have them.

Continue reading
  2696 Hits
  0 Comments

KNOWLEDGE, INSIGHT & STRATEGY FOR UTILITY SAFETY & OPS PROFESSIONALS

Incident Prevention is produced by Utility Business Media, Inc.

360 Memorial Drive, Suite 10, Crystal Lake, IL 60014 | 815.459.1796 | This email address is being protected from spambots. You need JavaScript enabled to view it.
© 2004 - 2019 Incident Prevention. All Rights Reserved.