Incident Prevention Magazine

Jesse Hardy, CSP, CET, CUSP

Overcoming the Effects of Rapid Growth

Web-170717-Clearing-Pic-01-for-IP-Article

Once upon a time, there was a construction company that did great work. The employees delivered their projects on time without change orders, and they completed them without harming people or the environment. All their happy clients gave them more and more work, which the company gladly accepted, believing that surely the fairy tale would continue. But then the company discovered that this rapid growth had spread them so thin that their production, safety and environmental quality had faded away. This moved them from best to worst in the eyes of their clients, and the company almost went bankrupt due to injuries, lawsuits and loss of contracts. The end.  

Not all stories have a happy ending. And many of you well know that the current project-load reality in the utility construction industry certainly isn’t a fairy tale. However, there still can be a positive outcome for your company – even in extreme growth cycles – if you and your leaders master the skills of operational assessment and communication.

Earlier this year I ran Supreme Industries’ numbers and found that our work hours were up 56 percent over the same period last year (January-May). I was shocked – not because of the rapid growth, but because I didn’t receive any warning signals from our safety scoreboard. Don’t get me wrong, I knew things were busy, but other than the fact that I was ordering a lot more health, safety and environmental (HSE) supplies than last year, I didn’t see the magnitude of our growth in my daily life. But why didn’t I?

Flashback three years: I’m sitting with Nate Boucher, Supreme Industries’ vice president of civil and drilling, and Gavin Boucher, vice president of clearing and operations, and Nate says, “Jesse, our field leadership wants more professional development. We’ve done ‘StrengthsFinder 2.0’ and ‘Emotional Intelligence,’ but what’s next? We believe our divisions are going to be growing for the foreseeable future. Gavin and I are taking care of equipment and infrastructure planning, but we want you to prepare our field leaders professionally for what’s coming.” After that conversation, I took some time to outline what we needed to do in terms of future professional development.

Getting back to the present day, I believe the conversation I had with Nate and Gavin three years ago plus the actions we took after the conversation was over are the reasons why I didn’t notice a rapid growth cycle on our safety scoreboard earlier this year.

Continue reading
  3106 Hits
  0 Comments
Dave Johnson, CUSP, and Mack Turner, CUSP

7 Electrical Theory and Circuitry Myths – Busted

Web-Myth-1---breaker-box

In the electric utility business, we have highly trained employees who are proud that they have learned the skills to be able to safely work around high voltage. However, a phrase we hear too often is “Hey, it’s only secondary,” which implies that secondary is not as hazardous as primary, lightning or fault current. We’re not going to debate that in this article, but we are going to discuss – and bust – some common myths about working with 120-volt circuitry and equipment, as well as myths regarding lightning and fault current exposure.

Myth 1: Circuit breakers are better than fuses.
If you utter this statement and are merely talking about convenience, you may have a cogent argument, but convenience does not outweigh safety. If you are merely talking about cost, you may again have a cogent argument, but the cost argument doesn’t win when it comes to safety because how do you put a price on a human life?

So, why might a fuse be better than a circuit breaker? All fuse manufacturer representatives will assure you that fuses in general operate faster than breakers. They may operate in less than a quarter of a cycle compared to three to four cycles for many circuit breakers. If you are in series or parallel with fault current flow, you literally are being cooked from the inside out. Reducing the amount of time the circuit is allowed to operate is a better protection strategy than allowing current flow to go on longer. Additionally, fuses typically are better at interrupting an avalanche of fault current from an incoming service. Breakers and fuses have maximum amp interruption capacity ratings, meaning if a breaker or fuse is installed on a circuit with a higher fault current capability than the breaker, the breaker or fuse can simply melt or arc across and fail to operate. The least-protective fuse interrupts 10,000 amperes of incoming energy, while a typical branch circuit breaker interrupts 5,000 amperes.

Myth 2: If you turn on a light switch with wet hands, you will get electrocuted.
While there is a possibility you might get electrocuted, you probably will not. That’s not to say you won’t get shocked; you must understand the difference between shock and electrocution. A shock occurs anytime current flows through your body, via any path, for any duration and at any magnitude. Electrocution is a shock that kills you by interfering with bodily processes. It only takes as little as 50 milliamps to send an adult heart into ventricular fibrillation; death is imminent within four to six minutes of ventricular fibrillation.

Another definition also is useful here: Fault current is current flowing anywhere you don’t want it to flow, especially through you. Fault current can flow in parallel or in series with normal current flow, or with the load. You don’t want to be in the path of fault current. Fortunately, the likelihood of being in a fault current path while operating a modern plastic switch, even with wet hands, is very low. Even lower is the likelihood of electrocution from the event.

Continue reading
  3976 Hits
  1 Comment
Raffi Elchemmas, MBA, AEP, and Sarah Hall

The Science of Keeping Workers Safe

Web-2678-22_A

Ergonomic safety has had a profound impact on the utility industry over the last decade, without many workers even knowing it. Yet as professional tool ergonomists, we have seen many erroneous “ergonomic” product claims over the years, so in this article we want to highlight the importance of knowing how ergonomic products are measured and if the tools you’re using are truly advancing ergonomics at your company.

Before we dive into the technical aspects of ergonomic measurements, let’s review some background information. OSHA continues to define line work as a high-risk occupation in terms of the risks of electrocution, falls and human error, but also in terms of risks for musculoskeletal disorders and ergonomic injuries. The agency has gone so far as to say that one in three injuries is an ergonomic injury. Examples of these injuries include carpal tunnel syndrome, rotator cuff tendinitis, elbow epicondylitis (tennis elbow) and trigger finger tendinitis.

These injuries translate into an incredible number of dollars spent by employers. According to the 2017 Liberty Mutual Workplace Safety Index, U.S. businesses spend more than a billion dollars a week on serious, nonfatal workplace injuries. Of the billion dollars a week, over 20 percent of the injuries – which account for nearly $14 billion a year – are directly attributed to overexertion involving outside sources.

Objectively Measuring Ergonomics
Based on the information presented above, it’s clear that quality workplace ergonomics are good for both employee health and an employer’s bottom line. But while almost every tool manufacturer talks about ergonomics, are their claims about ergonomics true or just a marketing stunt? It’s important to understand how a company tests their products prior to purchasing them. The truth is that some tool manufacturers have not measured ergonomics at all, some outsource the measurement process and some do partial measurements but don’t perform the complete process. At Milwaukee Tool, not only do we conduct measurements in-house, but we also have teams of subject matter experts who implement ergonomic designs into the tools utilities use every day.

Objectively measuring ergonomics is a very precise task. Some ergonomic risk factors to look for in your tools are high levels of noise, vibration and required force. While some exposure to these risk factors isn’t necessarily hazardous, exposure to high thresholds of these categories puts workers at serious risk for eardrum damage, vibration-induced white fingers, trigger finger tendinitis and carpal tunnel syndrome, among others. 

Continue reading
  3131 Hits
  0 Comments
Brian Bourquin

Rope Access Work in Today’s Line Trade

Web-Rescue_v1.00_00_33_20.Still009

Rope has always been at the core of many operations and is the principal means of removing an injured person from a structure or manhole. In recent years, labor laws have revised and expanded expectations, particularly for worker fall protection on towers. The quest for methods to accommodate these rules has created opportunities for new applications of rope techniques, introducing wider use of rope access and rope descent technologies into the line industry.

Rope access describes rope-use techniques that have evolved from centuries-old rope applications incorporating maritime, construction and, in particular, mountain climbing or controlled descent methods. In the firefighting world, rescue using rope is referred to as “high-angle” or “technical” rescue. Rope access has been used for centuries in construction, and most readers today are familiar with scenes of lumberjacks, wind energy blade inspections, and dam and bridge inspectors suspended over the sides of structures.

In the line trade, we traditionally think of rope in terms of its use as a handline, which, in the event of an emergency, doubles as a rescue line. This rescue technique is still as relevant now as it was in the late 19th century, as the idea to plan your rescues is not a new one. Any differences between rope rescue today and rope rescue in the early days of power lines are primarily due to technological advances. One example of these advances is Buckingham Manufacturing Co.’s OX BLOCK, which is used for hurt-man rescue and self-rescue, as well as lowering, raising and snubbing loads.

To the employer researching rope access and controlled descent techniques for workers, it is important that line personnel be involved in the research process so that the techniques, tools and training that are adopted effectively match the needs of the workplace. Keep in mind that rope access is not a substitute for all work tasks – it is simply another tool. Both training and research are critical for employers and employees considering rope access techniques; this includes the review and assessment of tools and other items currently available on the market, including rescue-rated blocks and property-rated handlines.

Continue reading
  4015 Hits
  0 Comments
Danny Raines, CUSP

Voice of Experience: De-Energizing Lines and Equipment for Employee Protection

Lately there has been a rash of incidents involving flashes and contacts with primary voltage. The incidents occurred due to improperly written switching orders or missed switching steps, none of which were recognized by the workers involved with the tasks. These types of errors have long been a problem and continue to result in numerous injuries and fatalities.  

In April 2014, OSHA’s revised 29 CFR 1910.269 standard was published. This was the first revision to the standard in 20 years, and one paragraph in particular that was clarified was paragraph (m), “Deenergizing lines and equipment for employee protection,” which addresses system operations. As of the OSHA update, the employer is now obligated to appoint an employee to be in charge of the clearance issued by the system operator; this employee will have control over and oversight of all switching that affects the performance of the system.  

Specifically, OSHA has promulgated the following rules.  

1910.269(m)(2)(i)
If a system operator is in charge of the lines or equipment and their means of disconnection, the employer shall designate one employee in the crew to be in charge of the clearance and shall comply with all of the requirements of paragraph (m)(3) of this section in the order specified. 

1910.269(m)(3)(ii)
The employer shall ensure that all switches, disconnectors, jumpers, taps, and other means through which known sources of electric energy may be supplied to the particular lines and equipment to be deenergized are open. The employer shall render such means inoperable, unless its design does not so permit, and then ensure that such means are tagged to indicate that employees are at work. 

Electric utilities must establish a clearance – also referred to as an “open air gap” – on all known sources of the system and source voltages. A clearance also should be used to disable all automatic switchgear to ensure that all system voltage has been isolated from the work area. This procedure is regulatory language and required to protect employees. Tags shall be applied to all open points to indicate that employees are at work and nothing shall be re-energized.

Continue reading
  3890 Hits
  0 Comments
Jim Vaughn, CUSP

August 2017 Q&A

Q: We are a contractor and were recently working in a manhole with live primary cables running through it. We were cited in an audit by a client’s safety team for not having our people in the manhole tied off to rescue lines. We had a tripod up and a winch ready for the three workers inside. What did we miss?

A: This question has come up occasionally, and it’s usually a matter of misunderstanding the OSHA regulations. The latest revision of the rule has modified the language, but following is the relevant regulation. Look for the phrases “safe work practices,” “safe rescue” and “enclosed space.”

1910.269(e)(1)
Safe work practices. The employer shall ensure the use of safe work practices for entry into, and work in, enclosed spaces and for rescue of employees from such spaces.

1910.269(e)(2)
Training. Each employee who enters an enclosed space or who serves as an attendant shall be trained in the hazards of enclosed-space entry, in enclosed-space entry procedures, and in enclosed-space rescue procedures.

1910.269(e)(3)
Rescue equipment. Employers shall provide equipment to ensure the prompt and safe rescue of employees from the enclosed space.

This rule deals with enclosed spaces, not other spaces referenced in 29 CFR 1910.269(t), “Underground electrical installations.” Enclosed spaces are not, as many think, spaces with energized cables inside. In fact, the definition of an enclosed space has no mention of energized cables. What it does have is the single criterion for an enclosed space: Under normal conditions, it does not contain a hazardous atmosphere, but it may contain a hazardous atmosphere under abnormal conditions.

Continue reading
  3116 Hits
  1 Comment
David McPeak, CUSP, CET, CHST, CSP, CSSM

Frontline Fundamentals: Organizational Culture: What Caves Can Teach Us

If you were in a cave and someone yelled “Watch out for that stalagmite!” would you look up or down? If you said down, you are correct. Both stalagmites and stalactites are formed in caves by mineral deposits from trickling water. Stalactites result from water dripping from the ceiling. They hang down, typically are hollow, have smaller bases and form faster than their counterparts. Stalagmites are built from the ground up when water drips on the cave floor. They have a more solid structure with a larger base that takes more time to form.

This imagery is useful when contemplating and discussing organizational culture. Does your company have a top-down (stalactite) or bottom-up (stalagmite) culture? As you think about your answer, consider how your organization handles the following occurrences.

Occurrence 1: Change
Stalactite: The company is reactive and changes only because they have to due to incidents or regulatory reasons. Management creates or revises programs and policies that are implemented during lecture-style training sessions conducted per organizational hierarchy. Employees have no or very limited opportunities to ask questions or provide feedback about the change.

Stalagmite: The company is proactive and changes because they want to. Leaders anticipate the need for change. Frontline workers are involved in creating or revising programs and policies that are implemented during training sessions, and they encourage questions and feedback from safety leaders, safety advocates and change agents.

Continue reading
  3379 Hits
  0 Comments

KNOWLEDGE, INSIGHT & STRATEGY FOR UTILITY SAFETY & OPS PROFESSIONALS

Incident Prevention is produced by Utility Business Media, Inc.

360 Memorial Drive, Suite 10, Crystal Lake, IL 60014 | 815.459.1796 | This email address is being protected from spambots. You need JavaScript enabled to view it.
© 2004 - 2019 Incident Prevention. All Rights Reserved.