Personal Protective Equipment

OSHA requires the use of personal protective equipment (PPE) to reduce employee exposure to hazards. FR Clothing, Gloves, Head Protection, Eyewear and Protective Footwear are all PPE.  The  articles listed below discuss their proper use and maintenance. Attend iP Safety Conference & Expo to learn more about the latest PPE products.

Free Subscription


Lee Marchessault, CUSP

Making Sense of Protection Requirements for Open-Air Arc Flash Hazards

Arc-Flash-Web

Electric utility workers face complex, high-risk electrical hazards nearly every day. Information about shock hazards – which may come from impressed voltage, residual energy, induction, objectionable current flow in a grounding system or stored energy – has been taught to many of us for quite some time, as have the methods of assessing them.

On the other hand, arc flash hazard assessments are still relatively new to us. In the past, most of us knew that an arc flash could potentially occur during the course of performing our tasks, but the level of the flash and the PPE requirements – other than wearing 100 percent cotton – were not seriously considered in our day-to-day activities until approximately 15 to 20 years ago. To provide more concrete guidelines, OSHA published new regulations in April 2014, with more recent enforcement dates. Instead of making a best guess about PPE, the industry now has a reasonable approach to providing adequate PPE for utility employees who are tasked with performing open-air work. Once a utility completes the required arc flash analysis, develops a policy based on the analysis results and adequately conducts training for affected field personnel, the job of assessing risk and determining PPE levels can easily be incorporated into the daily job briefing. The goal is to make the assessment data easy to access and understand in order to provide effective protection for all workers.

Causes and Severity Levels of Arc Flash Events
An arc flash is the result of either a short circuit during which two energized parts of different potentials (phases) make contact, or a ground fault where an energized part and a grounded conductive part of a different potential make contact. An arc flash event may be caused by a failure of electrical apparatus, potentially due to lack of maintenance, or by worker error, perhaps due to an employee moving conductive parts near energized parts or leaving conductive tools in an energized work area. It’s important to note that differences in potential must always be effectively isolated by distance (air) or insulated barriers.

Continue reading
Rate this blog entry:
993 Hits
0 Comments
Naira Campbell-Kyureghyan, Ph.D.

Injury Risks Associated with Climbing in the Wind Energy Generation Industry

Figure-3D-Web

The growth of the wind energy generation industry in the U.S. has been phenomenal. According to the American Wind Energy Association, at the end of 2016 there were over 52,000 utility-grade wind turbines operational in more than 40 states, with a total capacity of 83,000 megawatts. The Global Wind Energy Council’s latest report shows that the U.S. has the second-largest wind power capacity, after China, with 16.9 percent of the world total, and employs over 100,000 people directly or indirectly. As the number of wind turbine towers grows, so does the number of people involved in their maintenance and repair. In 2015, the U.S. Bureau of Labor Statistics projected that employment of wind turbine service technicians would grow 108 percent between 2014 and 2024. There were approximately 4,400 wind turbine service technician jobs as of 2014.

Wind turbine tower heights also are increasing, with the tallest tower currently in the U.S. measuring 379 feet hub height, and even taller towers have been installed elsewhere in the world. While some towers are outfitted with service lifts, in the majority of towers personnel must climb fixed ladders to perform both routine and unusual operations. The increasing numbers and heights of towers mean more workers climbing ever greater distances.

Research studies conducted at the University of Wisconsin-Milwaukee (UWM) that have specifically investigated the renewable energy sector, including wind power generation, along with data from OSHA and the Bureau of Labor Statistics, have identified multiple risks to workers as a result of climbing fixed ladders. Strains and sprains, falls, overexertion and even fatalities were reported to be possible direct consequences of climbing and working at heights during both the construction and maintenance of wind turbines. Indirect risks also were identified, including potentially being electrocuted from contact with high-voltage cables and being struck by an object or caught between objects. Although power generation injury statistics are not separated by fuel source, 2015 Bureau of Labor Statistics’ data indicates that there were three fatal falls in the power generation industry, and 550 falls with nonfatal injuries. Data from the United Kingdom shows 163 total accidents in the wind power industry in 2016, including five fatal accidents. This data generally is assumed to vastly underreport the actual numbers, which may be 10 times higher.

Continue reading
Rate this blog entry:
976 Hits
0 Comments
Jim Vaughn, CUSP

Train the Trainer 101: Training and Verification Requirements for the Safety of Electric Utility Workers

A number of years ago I investigated a pole-top flash that took place during a transfer. The flash occurred when an improperly installed blanket left a dead-end flange exposed on the backside of the metal pole-top. During untying, the tie-wire contacted the exposed flange. No one was hurt. The issue was the lineman’s selection and installation of the blanket. The foreman assumed the lineman was experienced and competent to perform the three-phase transfer with minimal instruction. The problem was the lineman had spent the last several years on a service truck, had little transfer experience and had never worked a steel distribution pole. The foreman’s assumption was based on the fact that the lineman came from the IBEW hall. Even though they had never met, he assumed the lineman was sufficiently experienced – and so the root cause for the incident was established.

Training and verification of training for new, already-trained employees is another subject that has caused headaches for those professionals charged with OSHA training compliance and the employer liability that goes with it. OSHA, just like CanOSH, the agency’s Canadian counterpart, knows that training plays a huge role in incident prevention. It should be obvious that training prevents incidents, but the investigation of incidents across the continent proves that is not so. I have long said that the quality of your safety program and all of the component procedures, rules and policies that go with it, no matter how innovative and well-written, are only as good as the training you provide to the workforce. A safety program is supposed to protect the workforce first and the employer second. How can that happen if the workforce doesn’t know what’s in the program? And if the workforce doesn’t know what’s in the program, how does the employer expect the safety program to protect the employer?

Continue reading
Rate this blog entry:
1046 Hits
0 Comments
Jim Vaughn, CUSP

Train the Trainer 101: Addressing Common Fall Protection Questions and Concerns

To begin this article, I want to offer a disclaimer. One of the reasons the “Train the Trainer 101” series was created is to examine the practical aspects of compliance as they relate to the utility industry. We do that by reading the statutes, looking at how OSHA interprets and enforces the rules, reviewing what the consensus standards state and then determining practical ways the employer can manage and comply with the rules. Sometimes I raise an eyebrow, but in working with the group of professionals who review every article published in Incident Prevention’s pages, we endeavor to ensure the advice given is not merely good but also compliant. With that said, in the following pages I am going to address some fall protection issues that iP has received many questions about in recent weeks. Several of them are driven by the latest OSHA final rule on walking and working surfaces, which contains some new language and expanded rules on fall protection.

Who is Responsible?
I get a lot of questions about fall protection that stem from a salesperson telling an employer they need to do a certain something in order to comply with OSHA. First, a nod to our partners in the industry: the vendors and manufacturers. They have done a great job meeting the needs of the employer by innovating, creating and often collaborating with the industry to get the tools we need into the field. Work with your vendors and manufacturer representatives, but be clear about your responsibilities in the relationship. Understand that there are no OSHA-approved devices for sale in any marketplace. OSHA does not approve equipment for manufacturers even though they may comment on a method of compliance if a written request is made by an employer. Even then, OSHA’s language to the employer often is something such as, “OSHA does not approve a particular device or piece of equipment, but the method you describe would meet the requirements of the standard.” And never forget that – no matter what the manufacturer’s rep says – you, as the employer, are ultimately responsible for how you comply with OSHA’s expectation. As I said, work with your vendors, but do your homework and educate yourself about the requirements. We aren’t just complying with standards – we’re protecting our employees and co-workers.

Common Misconceptions About Harnesses
I have often heard that you can’t arrest at the waist or chest. That is correct if you are truly arresting, which usually means the act of interrupting a fall from height by a personal fall arrest system attached to an anchorage limited to a distance of 6 feet. If you fall 6 feet, you must limit the fall arrest’s load, and the fall arrest’s load must be distributed across the body. That is why we use a full-body harness.

Continue reading
Rate this blog entry:
3112 Hits
0 Comments
Jim Vaughn, CUSP

April 2017 Q&A

Q: Our plant safety committee has a longtime rule requiring electrical hazard safety shoes for our electricians. We were recently told by an auditor that we have to pay for those shoes if we require employees to wear them. We found the OSHA rule requiring payment, but now we wonder if we are really required to use the shoes. Can you help us figure it out?

A: Sure, we can help. But first, please note that Incident Prevention and the consultants who have reviewed this Q&A are not criticizing a rule or recommending a rule change for any employer. What we do in these pages is explain background, intent and compliance issues for workers and employers in the workplace.

You mentioned a longtime rule that probably dates back to the early OSHA rules that required electrical hazard boots for electricians. We can’t remember exactly when, but there was a letter to administrators in the early 1990s and subsequent rule-making that changed the language on the use of electrical hazard shoes. Your auditor is right; if you require employees to wear them, you are required to pay for them because unlike regular safety shoes, the electrical hazard criterion makes the safety shoe a specialty shoe. Specialty shoes must be provided at no cost to the employee (see www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=INTERPRETATIONS&p_id=29825).

Now let’s address the question, are the shoes required? Employers are required to perform a workplace hazard assessment and then use engineering or procedural controls to eliminate hazards. If a hazard cannot be eliminated by procedures or engineering, PPE is required. OSHA agrees throughout current literature that electrical hazard shoes are to be employed as part of a system of protection based on the hierarchy of controls. If you read the rule closely, you will see that the language is very particular. OSHA 29 CFR 1910.136(a) – edited here for clarity and space – states that the “employer shall ensure that each affected employee uses protective footwear … when the use of protective footwear will protect the affected employee from an electrical hazard, such as … electric-shock hazard, that remains after the employer takes other necessary protective measures.” Those other measures are the hierarchy first, PPE last.

Continue reading
Rate this blog entry:
544 Hits
0 Comments
Hugh Hoagland and Stacy Klausing, M.S.

Maximizing Your Arc-Rated Gear

Maximizing Your Arc-Rated Gear

When designing your PPE program, how do you know which option will work best for your application? How can you get the most for your money? How can you get no-cheating compliance from your workers? With so many arc-rated (AR) and flame-resistant (FR) PPE products on the market, it can be difficult for a utility or utility contractor to make a sound decision. To start, complete an analysis to determine hazard levels, as well as the workers who will be exposed. Application, comfort and cost should be considered when deciding on the best product to purchase. In this article, we will help you see how to maximize your AR and FR gear. The process begins with making a choice that makes sense for your company and your application, and then you will need to know how to care for the PPE so you can get the most from your money and extend the equipment’s lifespan.

Application and Comfort
While there have long been arguments and marketing claims about the superiority of either treated or inherent fibers used for FR and AR clothing, the truth is that both can work well from a protection standpoint, and both have a place in the market. Determining which one to use depends on the application and properties the end user needs.

For instance, aramids are durable and can work well with exposure to certain acids and bases – as an example, para-aramid is sensitive to chlorine bleach, mineral acids and UV, but these do not affect its flame resistance – yet pure aramids do not work well with regard to molten metal hazards because molten metal sticks to the fabric. However, there are several aramid blends that work well with molten metal. Modacrylics are great for chemical resistance, but the fiber has a high amount of shrinkage in a thermal exposure and doesn’t pass some of the small-scale tests for flash fire unless blended. Cottons and a similar, regenerated cellulose FR fiber known as FR rayon are breathable, soft and relatively inexpensive, yet they do not perform well in acid exposures. They also have fair colorfastness, meaning that their colors can fade with exposure to light and laundering.

Continue reading
Rate this blog entry:
4761 Hits
0 Comments
Jim Vaughn, CUSP

Train the Trainer 101: The New Walking-Working Surfaces Final Rule

OSHA’s final rule on 29 CFR 1910 Subpart D, “Walking-Working Surfaces,” is finally here. It’s 26 pages of nine-point font equaling 21,675 words, and I read them all. It’s big, and if you include the preamble in your analysis, it is also complicated. It was just as hard to write about as it was to read. I guess that shouldn’t be unexpected for a final rule that has been in the works since 1983. The original 1910 Subpart D was published in 1971. The first update was proposed in 1983, but it was never ratified. Proposals were again considered in either the Construction standard or the General Industry standard in 1990, 1994 and 2003. This edition of the final rule for 1910 Subpart D covers it all. OSHA should be congratulated for bringing almost all of the fall-related standards into one location, making it easier for the employer to find rules related to working surfaces under one subpart instead of having to search for those rules that may affect the employer’s workplace. This may be news to some novice safety professionals in the utility industry, but not all regulations affecting us are restricted to 1910.269 or 1926 Subpart V. Subpart D applies, so it is important to be familiar with it.

What’s New?
Preventing falls is almost the entire purpose of rules for walking-working surfaces. The surfaces are not always those spaces of aisles between walls. Most walking or working spaces in the workplace are not defined aisles; they are more likely to be incidental spaces about the work area. It is quite easy for those incidental spaces to be encumbered by tools, materials and process waste that create stumbling or tripping hazards. In addition, many of those working spaces are raised surfaces, from the tops of foundations to the tops of skyscrapers. That being the case, OSHA has brought into Subpart D the body of fall protection standards. You will now find a greatly expanded section on ladders; step bolts (towers) and manhole steps; scaffolds and rope descent systems (building maintenance); the duty to have fall protection; new and expanded requirements on fall protection equipment design; and some expanded language on the training of employees to recognize and prevent falls in the workplace.

Continue reading
Rate this blog entry:
4913 Hits
0 Comments
Danny Raines, CUSP

Voice of Experience: OSHA’s MAD Changes and a Missed Opportunity

In the 2014 OSHA update to 29 CFR 1910.269 and 1926 Subpart V, major changes were made regarding apparel and minimum approach distance (MAD) calculations. And yet I believe the agency missed an opportunity related to distribution voltages and gloving of energized conductors and equipment. For all intents and purposes, other than the MAD updates, few changes occurred in 29 CFR 1910.269(l) regarding working position. A new requirement removed any implied obligation that an employer is accountable for ensuring employees do not approach or take any conductive objects within the MADs found in tables 6 to 10 of 1910.269. The standard now clearly and without any doubt requires an employer to calculate and provide MADs to all employees and contractors working on energized systems.

Paragraph 1910.269(l)(3)(i) now states that the “employer shall establish minimum approach distances no less than the distances computed by Table R-3 for ac systems or Table R-8 for dc systems.” And the updated standard also now requires an engineering analysis on voltages greater than 72.5 kV to allow for transient overvoltages that occur due to system operations, breakers, capacitors or lightning. Ironically, the MAD found in the 2002 National Electrical Safety Code for 25-kV systems was 31 inches, 12 years before it was changed in OSHA’s update to 1910.269.

Continue reading
Rate this blog entry:
1907 Hits
0 Comments
Hugh Hoagland

Best Practices for Arc-Rated Clothing Programs

Best Practices for Arc-Rated Clothing Programs

Many things have changed since 1994, when the first hint of arc-rated (AR) materials hit the utilities. Back then, the best practice was to wear cotton jeans, heavy cotton shirts and heavy cotton-shell winter wear. Other personal protective equipment (PPE) like rainwear illustrated an industry problem: There were not many good flame-resistant (FR) clothing options available. At the time, the only markets for FR garments were military, aviation and refineries. Non-melting rainwear was not really on the market since most “FR” rainwear at that time was made of nylon or polyester, which means it melted and thus didn’t meet OSHA requirements.

In the years immediately following the promulgation of the 1994 version of OSHA’s 29 CFR 1910.269 standard, a few utilities began using AR shirts. However, in a 2001 IBEW survey, only 68 percent of utilities reported using AR shirts and rainwear. There was a false belief that cotton was somehow FR, but this was a misinterpretation of ASTM data provided to OSHA about heavy, 11-oz/yd² cotton. Any utility that had done calculations using ARCPRO – software that computes the thermal parameters of electrical arcs – knew it was basically impossible to justify not moving to AR garments given the available data. In the same IBEW survey, 70 percent of respondents reported using FR clothing – which was commonly used interchangeably with “AR clothing” at the time of the survey – as part of a uniform required by the company for which they worked. The tides were turning even then toward company-provided AR garments for line technicians.

Continue reading
Rate this blog entry:
5240 Hits
0 Comments
Danny Raines, CUSP

Voice of Experience: Hand and Skin Protection for Electric Utility Workers

With the recent changes to the OSHA standard, many employers are working on what rules apply – the arc flash standard or the PPE standard – and how to comply with them. Part of the issue is determining how many types of protection are needed and what types of protection are appropriate.

To begin, OSHA’s requirements for all personal protective equipment can be found in 29 CFR 1910 Subpart I. Rules specific to hand protection can be found in 1910.138. They read as follows:

1910.138(a)
“General requirements. Employers shall select and require employees to use appropriate hand protection when employees' hands are exposed to hazards such as those from skin absorption of harmful substances; severe cuts or lacerations; severe abrasions; punctures; chemical burns; thermal burns; and harmful temperature extremes.”

Continue reading
Rate this blog entry:
2761 Hits
0 Comments
Jim Vaughn, CUSP

February 2016 Q&A

Q: I work for a small utility and am new to my safety role. Recently I have been wading through the Federal Motor Carrier Safety Regulations (FMCSR) in an attempt to understand my responsibilities with regard to testing CDL drivers. Can you briefly explain these responsibilities?

A: FMCSR 391.31 requires the employer to ensure a driver is competent by means of road testing. The FMCSR allows a valid commercial driver’s license as evidence of competency (see FMCSR 391.33). If the employer accepts the evidence of the driver’s competency, the employer does not have to road test the driver. Rule 391.33(c) allows the employer to conduct a road test if they so choose even if the driver has a current license and certificate of competency. If the employer intends for the driver to haul double or triple trailers, they are required to conduct a road test. The road test criteria are listed in FMCSR 391.31(c).

Continue reading
Rate this blog entry:
3234 Hits
0 Comments
Danny Raines, CUSP

Voice of Experience: PPE Regulatory and Consensus Standard Requirements

OSHA 29 CFR 1910 Subpart I and 1926 Subpart E cover the requirements of personal protective and lifesaving equipment. With the publication of OSHA’s final rule in April 2014, the general industry and construction standards are now essentially the same for electric utilities, and there are few if any differences in the PPE required by each standard.

In addition to OSHA’s regulatory standards, there are ANSI/ASTM and other consensus standards that govern the manufacturing, type and ratings for all PPE. These consensus standards change as the industry evolves and PPE improves. All PPE should meet the most recent standard requirements. In the remainder of this article, we will examine OSHA’s PPE requirements for electric utility workers, as well as some of the latest consensus standard requirements.

Continue reading
Rate this blog entry:
3030 Hits
0 Comments
Jim Vaughn, CUSP

Train the Trainer 101: Practical MAD and Arc Flash Protection

Author’s Note: Before we get to the article, I want to thank the members of Incident Prevention’s editorial advisory board for their help in assembling this installment of “Train the Trainer 101.” They help me keep my head on straight, especially when I have ideas that are way outside the box. Even though I am also on the board, they still hold me to high standards of accountability and accuracy. These folks are a great asset to iP and make better writers of everyone who contributes to the publication.

Over the past year, iP subject matter experts have fielded many questions about how to meet the minimum approach distance (MAD) and arc flash (AF) rules published by OSHA in the 2014 final rule regarding 29 CFR 1910.269 and 1926 Subpart V. The questions about MAD came from a variety of perspectives, but they were primarily submitted by contractors trying to facilitate the information transfer now required by 1910.269(a)(3) and 1926.950(c). Without information about a system’s fault characteristics, the contractor cannot determine MAD, either by calculation or via the tables in 1910.269 Appendix B and Appendix B to 1926 Subpart V. That means the contractors must fall back on the sometimes absurd provisions of alternative tables R-7 through R-9. In my work for a contractor, we have found that those alternative tables can make some work – particularly transmission work – very difficult, if not impossible, especially when faced with compact lattice structures or old construction standards on wood poles. For AF programs, that lack of information may be overcome effectively by experienced guesswork, but compliance by guesswork cannot be defended when the compliance safety and health officer asks how you determined the AF compliance requirements.

Continue reading
Rate this blog entry:
7724 Hits
0 Comments
Jarred O'Dell, CSP, CUSP

N95 Filtering Face Pieces: Where Does Your Organization Stand?

N95 Filtering Face Pieces: Where Does Your Organization Stand?

When it comes to following health and safety standards, nearly every worker tries to do the right thing. And when workers deviate from standards and best practices, it is typically due to lack of knowledge and proper training. One industry topic that is not yet fully understood and continues to be heavily debated is the N95 filtering face piece, in particular its uses and program requirements. In response, this article seeks to assist those who are involved with the development and enforcement of their organization’s voluntary respiratory protection policy.

To begin, there are two reasons why N95 face pieces are especially relevant to readers right now.

First, OSHA is currently in the process of revising the standard on crystalline silica dust, which is a common utility and construction industry hazard that is oftentimes mitigated by N95 face pieces. OSHA’s fact sheet on crystalline silica (see www.osha.gov/OshDoc/data_General_Facts/crystalline-factsheet.pdf) describes the substance as “a basic component of soil, sand, granite, and many other minerals” that workers may encounter when sandblasting, jackhammering, drilling rock or working with concrete. Clearly, many utility industry workers are exposed to most of these activities – if not all of them – on a recurring basis.

Continue reading
Rate this blog entry:
3308 Hits
0 Comments
Samy Faried

Arc Flash Mitigating Technologies and the OSHA Final Rule

Arc Flash Mitigating Technologies and the OSHA Final Rule

On April 11, 2014, OSHA issued the final rule regarding 29 CFR 1910.269 and 1926 Subpart V. The final rule included modifications that address minimum approach distances, fall protection systems and hazards of electric arcs. Since the publication of the rule, there have been an extensive number of articles published that detail changes to 1910.269 and 1926 Subpart V. Those articles focus on explaining the changes but most lack information about arc flash mitigating technologies.

This article focuses on current technologies available to minimize and prevent exposure of workers to arc flashes. Employers must ensure workers are provided the necessary protection against these flashes, as it can mean the difference between life and death. According to NFPA 70E, arc flash incidents occur five to 10 times each day and account for 400 fatalities each year. Additionally, the Electrical Safety Foundation International has reported that more than 2,000 workers are treated annually for flash-related burns. The severity of a flash and the related severity of injury primarily depend on the magnitude of the arcing current and the duration of exposure. A typical three-cycle circuit breaker will interrupt fault currents in 50 milliseconds. Exposure to a temperature of 205 degrees Fahrenheit for 100 milliseconds may cause a third-degree burn, which will cause skin to fall off and may result in death.

Continue reading
Rate this blog entry:
6301 Hits
0 Comments
Derek Sang

How to Navigate the FR Clothing Marketplace

How to Navigate the FR Clothing Marketplace

When the original version of the OSHA 1910.269 standard was published, flame-resistant (FR) clothing wasn’t even mentioned. The dangers associated with electric arcs were known, but the standard only required that an employer not allow an employee to wear clothing that, when exposed to flames or electric arcs, could increase the extent of injury sustained by the employee. This was covered under 1910.269(l)(6)(iii). The rule eliminated the use of garments constructed with synthetics such as polyester, nylon, rayon and acetate, which could melt and drip, and led to the adoption of clothing made with 100 percent cotton. The problem was that non-FR cotton – once exposed to thermal energies beyond its ignition point – will ignite and continue to burn, thus adding to an injury.

Now that the much-anticipated revisions to the 1910.269 standard have been published, they have introduced a number of new challenges to the electric utility industry and those entrusted with their employees’ safety. Specifically, page 20317 of the final rule (see www.gpo.gov/fdsys/pkg/FR-2014-04-11/pdf/2013-29579.pdf) states that the “new provisions for protection from electric arcs include new requirements for the employer to: Assess the workplace to identify employees exposed to hazards from flames or from electric arcs, make reasonable estimates of the incident heat energy to which the employee would be exposed, ensure that the outer layer of clothing worn by employees is flame resistant under certain conditions, and generally ensure that employees exposed to hazards from electric arcs wear protective clothing and other protective equipment with an arc rating greater than or equal to the estimated heat energy.”

Continue reading
Rate this blog entry:
6229 Hits
0 Comments
Jim Vaughn, CUSP

Train the Trainer 101: Back to Basics: ‘Gentlemen, This is a Football’

I recently spent several weeks studying an incident, trying to understand how it had happened and – more importantly – how it could have been prevented. Maybe the answer was associated with human performance, or maybe culture, or it could have been procedures, or ... well, maybe it could have been associated with any number of things. In other words, even with all of my experience and training, I had a hard time finding the singular root cause. This dilemma made me recall a question I missed on an engineer-in-training exam I took in the 1970s. The question had ladder diagrams and loop schematics and required me to determine why indicator light I-107 was off. After a long study of the supporting documents and employing all of my superior intellect, I proudly answered the question 100 miles off. Why? The correct answer was, “The lamp was burned out”; this is probably why I never became an engineer.

Continue reading
Rate this blog entry:
3902 Hits
0 Comments
Danny Raines, CUSP

Voice of Experience: Fundamentals of Underground Padmount Transformers

In recent months Incident Prevention has received several questions about underground (UD) padmount transformers, so in this installment of “Voice of Experience,” I’d like to take the time to cover the general aspects of these types of transformers.

To begin, there are a few different types of single-phase and three-phase UD padmounts: live front with exposed live primary parts, 600-amp bolt-on elbows and loop feed with bushings and elbows. All of these transformers are available in several voltage ranges.

The proper PPE must be worn when an employee is opening, entering and working on energized transformers. This includes a rated hard hat, eye and face protection, rubber gloves, heavy leather boots and arc-rated FR clothing. Additionally, all PPE must be worn by any employee exposed to energized equipment and cables until the transformer has been de-energized and checked for the absence of voltage, and all exposed parts have been properly grounded.

Continue reading
Rate this blog entry:
8232 Hits
0 Comments
Jim Vaughn, CUSP

June 2015 Q&A

Q: Are there any changes to steel-toe boot requirements for lineworkers in the recently revised OSHA 1910.269 standard?

A: OSHA still leaves it to employers to decide whether hard-toe or protective footwear is required. As with all other PPE, the decision should be made based on risks and history. Wearing safety footwear is not required by the PPE rule. However, what is required in OSHA 29 CFR 1910.136, “Foot protection,” is a mandatory assessment of the work environment. The rule states that the employer “shall ensure that each affected employee uses protective footwear when working in areas where there is a danger of foot injuries due to falling or rolling objects, or objects piercing the sole, or when the use of protective footwear will protect the affected employee from an electrical hazard, such as a static-discharge or electric-shock hazard, that remains after the employer takes other necessary protective measures.”

Continue reading
Rate this blog entry:
3272 Hits
2 Comments
Ed Hunt, CUSP

The Roller-Coaster Life Cycle of IEEE 1307

The Roller-Coaster Life Cycle of IEEE 1307

IEEE 1307 is a little-known work group that is part of a larger IEEE subcommittee known as ESMOL, which stands for Engineering in the Safety, Maintenance and Operation of Lines. Both IEEE 1307 and ESMOL fall under the umbrella of the IEEE Transmission and Distribution Committee. IEEE 1307 is also the title of a utility fall protection consensus standard that has existed since the early 1990s. In light of the recent OSHA changes to fall protection, it seems appropriate to spread the knowledge about this industry standard.

Continue reading
Rate this blog entry:
6363 Hits
0 Comments
 
 ufplogo
ufp logo rev

Subscribe today to receive Incident Prevention magazine!

Free Subscription

Go to top